skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zilitinkevich, Sergej"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large Eddy Simulations (LES) of neutral flow over regular arrays of cuboids are conducted to explore connections between momentum (z 0m ) and scalar (z 0s ) roughness lengths in urban environments, and how they are influenced by surface geometry. As LES resolves the obstacles but not the micro‐scale boundary layers attached to them, the aforementioned roughness lengths are analyzed at two distinct spatial scales. At the micro‐scale (roughness of individual facets, e.g. roofs), it is assumed that both momentum and scalar transfer are governed by accepted arguments for smooth walls that form the basis for the LES wall model. At the macro‐scale, the roughness lengths are representative of the aggregate effects of momentum and scalar transfer over the resolved roughness elements of the whole surface, and hence they are directly computed from the LES. The results indicate that morphologically‐based parameterizations for macro‐scale z 0m are adequate overall. The relation between the momentum and scalar macro‐roughness values, as conventionally represented by log(z 0m /z 0s ) and assumed to scale with urn:x-wiley:00359009:media:qj3839:qj3839-math-0001 (where Re * is a roughness Reynolds number), is then interpreted using surface renewal theory (SRT). SRT predicts n = 1/4 when only Kolmogorov‐scale eddies dominate the scalar exchange, whereas n = 1/2 is predicted when large eddies limit the renewal dynamics. The latter is found to better capture the LES results. However, both scaling relations indicate that z 0s decreases when z 0m increases for typical urban geometries and scales. This is opposite to how their relation is usually modeled for urban canopies (i.e. z 0s /z 0m is a fixed value smaller than unity). 
    more » « less