skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zilong Tan, Kimberly Roche"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Linear mixed models (LMMs) are used extensively to model observations that are not independent. Parameter estimation for LMMs can be computationally prohibitive on big data. State-of-the-art learning algorithms require computational complexity which depends at least linearly on the dimension p of the covariates, and often use heuristics that do not offer theoretical guarantees. We present scalable algorithms for learning high-dimensional LMMs with sublinear computational complexity dependence on p. Key to our approach are novel dual estimators which use only kernel functions of the data, and fast computational techniques based on the subsampled randomized Hadamard transform. We provide theoretical guarantees for our learning algorithms, demonstrating the robustness of parameter estimation. Finally, we complement the theory with experiments on large synthetic and real data. 
    more » « less