We present an empirical measurement of the dark count rate seen in a large-format MKID array identical to those currently in use at observatories such as Subaru on Maunakea. This work provides compelling evidence for their utility in future experiments that require low-count rate, quiet environments such as dark matter direct detection. Across the bandpass from 0.946-1.534 eV (1310-808 nm) an average count rate of (1.847 ± 0.003) × 10−3photons/pixel/s is measured. Breaking this bandpass into 5 equal-energy bins based on the resolving power of the detectors we find the average dark count rate seen in an MKID is (6.26 ± 0.04) × 10−4photons/pixel/s from 0.946-1.063 eV and (2.73 ± 0.02) × 10−4photons/pixel/s at 1.416-1.534eV. Using lower-noise readout electronics to read out a single MKID pixel we demonstrate that the events measured while the detector is not illuminated largely appear to be a combination of real photons, possible fluorescence caused by cosmic rays, and phonon events in the array substrate. We also find that using lower-noise readout electronics on a single MKID pixel we measure a dark count rate of (9.3 ± 0.9) × 10−4photons/pixel/s over the same bandpass (0.946-1.534 eV) With the single-pixel readout we also characterize the events when the detectors are not illuminated and show that these responses in the MKID are distinctmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Abstract We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARIS
JHK (1.1–2.4μ m) spectroscopic data combined with VAMPIRES 750 nm, MECY , and NIRC2L pphotometry is best matched by an M3–M7 object with an effective temperature ofT = 3200 K and surface gravity log(g ) = 5.5. Using the relative astrometry for HIP 5319 B from CHARIS and NIRC2, and absolute astrometry for the primary from Gaia and Hipparcos, and adopting a log-normal prior assumption for the companion mass, we measure a dynamical mass for HIP 5319 B of , a semimajor axis of au, an inclination of degrees, and an eccentricity of . However, using an alternate prior for our dynamical model yields a much higher mass of . Using data taken with the LCOGT NRES instrument we also show that the primary HIP 5319 A is a single star in contrast to previous characterizations of the system as a spectroscopic binary. This work underscores the importance of assumed priors in dynamical models for companions detected with imaging andmore »