skip to main content

Title: Readout of a quantum processor with high dynamic range Josephson parametric amplifiers

We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 Ω environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250–300 MHz with input saturation powers up to −95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimation of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Finally, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Date Published:
Journal Name:
Applied Physics Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design and characterization of a low noise amplifier optimized for the readout of microwave kinetic inductance detectors is described. The work is first motivated through a description of microwave kinetic inductance detectors and a discussion of the requirements for the low-noise amplifiers employed for readout of these devices. Next, the design of a two-stage silicon germanium cryogenic integrated circuit low noise amplifier is presented. The small-signal and large-signal characteristics of the fabricated amplifier are then measured. It is shown that, at a physical temperature of 16 K, the amplifier achieves a gain of greater than 30 dB and an average noise temperature of 3.3 K over the 0.4–1.2 GHz frequency band while dissipating less than 7 mW. Moreover, the wideband compression characteristics are measured it is found that the linearity of the amplifier is sufficient to support frequency domain multiplexed readout of more than 500 detectors. 
    more » « less
  2. A common problem in single-cell measurement is the low-throughput nature of measurements. Monolithic CMOS microsystems have enabled many parallel measurements to take place simultaneously to increase throughput due to the integration of electrodes and amplifiers into a single chip. This paper explores a CMOS chip containing an array of 1024 parallel transimpedance amplifiers that takes advantage of a “half-shared” operational amplifier architecture. This architecture splits a traditional 5-transistor operational amplifier into two, the inverting half and the non-inverting half. Splitting an amplifier into two allows for the non-inverting half to be “shared” with several inverting halves, reducing the die area required for each individual amplifier. This allows for an increased number of amplifiers to be embedded into the same chip; in this case, 32 amplifiers are able to fit in the same space as 17 traditional 5-transistor operational amplifiers. The amplifiers exhibit low mismatch of 1.65 mV across the entire 1024 amplifier array, as well as high linearity in transimpedance gain. The technique will enable larger arrays to be created in future designs to allow electrophysiologists, among others, access to even higher-throughput measurement tools. 
    more » « less
  3. null (Ed.)
    This paper presents a fully reconfigurable readout circuit including a chopper-stabilized neural amplifier and a successive approximation register (SAR) analog-to-digital converter (ADC) for neural signal recording applications. Since the target neural signals - action potentials (APs) and local field potentials (LFPs) differ in the peak amplitude while occupying different frequency bandwidths, gain, and bandwidth reconfigurability would be advantageous in improving power and noise performance. The readout circuit is designed in 180 nm standard CMOS technology. It achieves the mid-band gain of 50.3 dB in the frequency band of 0.1 Hz - 250 Hz to detect the LFPs, and 63.4 dB in 267 Hz - 20.8 kHz for detecting the APs. The neural amplifier consumes a total power of 1.54 μW and 1.94 μW for LFP and AP configurations, respectively. The input-referred noises have been achieved as 0.97 μV rms (0.1 Hz - 250 Hz), and 0.44 μV rms (250 Hz - 5 kHz), leading to a noise efficiency factor (NEF) of 1.27 and 1.21, for the two configurations, respectively. It rejects the generated large DC offset up to 40 mV at the electrode-tissue interface, by implementing a DC servo loop (DSL). The offset voltage with the DSL becomes 0.23 mV, which is acceptable for the neural experiments. Enabling the impedance boosting loop, the DC input impedance is found to be within the range of 1.77 - 2.27 GΩ, introducing the reconfigurability in impedance for matching with the electrode impedance. The SAR-ADC having a varying sampling frequency ranging from 10 - 40 ksamples/s demonstrates to digitize the APs and the LFPs with the resolution from 8 - 10 bits. The entire AFE provides good compatibility to record the neural signal while lowering the large DC offset down to 0.23 mV. 
    more » « less
  4. The Quantum Instrumentation Control Kit (QICK) is a standalone open-source qubit controller that was first introduced in 2022. In this follow-up work, we present recent upgrades to the QICK and the experimental use cases they uniquely enabled for superconducting qubit systems. These include multiplexed signal generation and readout, mixer-free readout, predistorted fast flux pulses, and phase-coherent pulses for parametric operations, including high-fidelity parametric entangling gates. We explain in detail how the QICK was used to enable these experiments. 
    more » « less
  5. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less