Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Freeman, S.; Lederer-Woods, C.; Manna, A.; Mengoni, A. (Ed.)The thermodynamical conditions and the neutron density produced in a laser-induced implosion of a deuterium-tritium (DT) filled capsule at the National Ignition Facility (NIF) are the closest laboratory analog of stellar conditions. We plan to investigate neutron-induced reactions on 40 Ar, namely the 40 Ar( n , 2 n ) 39 Ar( t 1/2 =268 y), the 40 Ar( n , γ) 41 Ar(110 min) and the potential rapid two-neutron capture reaction 40 Ar(2 n , γ) 42 Ar(33 y) in an Ar-loaded DT capsule. The chemical inertness of noble gas Ar enables reliable collection of the reaction products.more » « less
-
Borexino could efficiently distinguish between and radiation in its liquid scintillator by the characteristic time profile of its scintillation pulse. This discrimination, first demonstrated on the ton scale in the counting test facility prototype, was used throughout the lifetime of the experiment between 2007 and 2021. With this method, the events are identified and subtracted from the solar neutrino events similar to . This is particularly important in liquid scintillators, as the scintillation is strongly quenched. In Borexino, the prominent decay peak was a background in the energy range of electrons scattered from solar neutrinos. Optimal discrimination was achieved with a , with a higher ability to leverage the timing information of the scintillation photons detected by the photomultiplier tubes. An event-by-event, high efficiency, stable, and uniform pulse shape discrimination was essential in characterizing the spatial distribution of background in the detector. This benefited most Borexino measurements, including solar neutrinos in the chain and the first direct observation of the CNO cycle in the Sun. This paper presents key milestones in discrimination in Borexino as a term of comparison for current and future large liquid scintillator detectors. Published by the American Physical Society2024more » « less
-
Abstract The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$ s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$ ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$ have been obtained in the 0.5–5 MeV neutrino energy range.more » « less
-
Abstract The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60–80 t capable of probing the remaining weakly interacting massive particle-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in136Xe using a natural-abundance xenon target. XLZD can reach a 3σdiscovery potential half-life of 5.7 × 1027years (and a 90% CL exclusion of 1.3 × 1028years) with 10 years of data taking, corresponding to a Majorana mass range of 7.3–31.3 meV (4.8–20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community.more » « lessFree, publicly-accessible full text available April 22, 2026
An official website of the United States government
