skip to main content

Search for: All records

Creators/Authors contains: "Zucker, Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent analyses of Gaia data have resulted in the identification of new stellar structures, including a new class of extended stellar filaments called stellar “strings,” first proposed by Kounkel & Covey. We explore the spatial, kinematic, and chemical composition of strings to demonstrate that these newfound structures are largely inconsistent with being physical objects whose members share a common origin. Examining the 3D spatial distribution of string members, we find that the spatial dispersion around the claimed string spine does not improve in the latest Gaia DR3 data release—despite tangible gains in the signal-to-noise ratio of the parallax measurements—counter to expectations of a bona fide structure. Using the radial velocity dispersion of the strings (averagingσVr=16kms1) to estimate their virial masses, we find that all strings are gravitationally unbound. Given the finding that the strings are dispersing, the reported stellar ages of the strings are typically 120× larger than their measured dispersal times. Finally, we validate prior work that stellar strings are more chemically homogeneous than their local field stars but show it is possible to obtain the same signatures of chemical homogeneity by drawing random samples of stars from spatially, temporally, and kinematicallymore »unrelated open clusters. Our results show that while some strings may be composed of real substructures, there is no consistent evidence for larger string-like connections over the sample. These results underscore the need for caution in over-interpreting the significance of these strings and their role in understanding the star formation history of the Milky Way.

    « less
  2. Abstract

    Deep optical and near-infrared imaging of the entire Galactic plane is essential for understanding our Galaxy’s stars, gas, and dust. The second data release of the Dark Energy Camera (DECam) Plane Survey extends the five-band optical and near-infrared survey of the southern Galactic plane to cover 6.5% of the sky, ∣b∣ ≤ 10°, and 6° >> −124°, complementary to coverage by Pan-STARRS1. Typical single-exposure effective depths, including crowding effects and other complications, are 23.5, 22.6, 22.1, 21.6, and 20.8 mag ing,r,i,z, andYbands, respectively, with around 1″ seeing. The survey comprises 3.32 billion objects built from 34 billion detections in 21,400 exposures, totaling 260 hr open shutter time on the DECam at Cerro Tololo. The data reduction pipeline features several improvements, including the addition of synthetic source injection tests to validate photometric solutions across the entire survey footprint. A convenient functional form for the detection bias in the faint limit was derived and leveraged to characterize the photometric pipeline performance. A new postprocessing technique was applied to every detection to debias and improve uncertainty estimates of the flux in the presence of structured backgrounds, specifically targeting nebulosity. The images and source catalogs are publicly available at

  3. Abstract

    We present an analysis of the kinematics of the Radcliffe Wave, a 2.7 kpc long sinusoidal band of molecular clouds in the solar neighborhood recently detected via 3D dust mapping. With Gaia DR2 astrometry and spectroscopy, we analyze the 3D space velocities of ∼1500 young stars along the Radcliffe Wave in action-angle space, using the motion of the wave’s newly born stars as a proxy for its gas motion. We find that the vertical angle of young stars—corresponding to their orbital phase perpendicular to the Galactic plane—varies significantly as a function of position along the structure, in a pattern potentially consistent with a wavelike oscillation. This kind of oscillation is not seen in a control sample of older stars from Gaia occupying the same volume, disfavoring formation channels caused by long-lived physical processes. We use a “wavy midplane” model to try to account for the trend in vertical angles seen in young stars, and find that while the best-fit parameters for the wave’s spatial period and amplitude are qualitatively consistent with the existing morphology defined by 3D dust, there is no evidence for additional velocity structure. These results support more recent and/or transitory processes in the formation of themore »Radcliffe Wave, which would primarily affect the motion of the wave’s gaseous material. Comparisons of our results with new and upcoming simulations, in conjunction with new stellar radial velocity measurements in Gaia DR3, should allow us to further discriminate between various competing hypotheses.

    « less
  4. For decades we have known that the Sun lies within the Local Bubble, a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust. However, the precise shape and extent of this shell, the impetus and timescale for its formation, and its relationship to nearby star formation have remained uncertain, largely due to low-resolution models of the local interstellar medium. Leveraging new spatial and dynamical constraints from the Gaia space mission, here we report an analysis of the 3D positions, shapes, and motions of dense gas and young stars within 200 pc of the Sun. We find that nearly all the star-forming complexes in the solar vicinity lie on the surface of the Local Bubble and that their young stars show outward expansion mainly perpendicular to the bubble's surface. Tracebacks of these young stars' motions support a scenario where the origin of the Local Bubble was a burst of stellar birth and then death (supernovae) taking place near the bubble's center beginning 14 Myr ago. The expansion of the Local Bubble created by the supernovae swept up the ambient interstellar medium into an extended shell that has now fragmented and collapsed into the most prominentmore »nearby molecular clouds, in turn providing robust observational support for the theory of supernova-driven star formation.« less
  5. Abstract Star formation primarily occurs in filaments where magnetic fields are expected to be dynamically important. The largest and densest filaments trace the spiral structure within galaxies. Over a dozen of these dense (∼10 4 cm −3 ) and long (>10 pc) filaments have been found within the Milky Way, and they are often referred to as “bones.” Until now, none of these bones has had its magnetic field resolved and mapped in its entirety. We introduce the SOFIA legacy project FIELDMAPS which has begun mapping ∼10 of these Milky Way bones using the HAWC+ instrument at 214 μ m and 18.″2 resolution. Here we present a first result from this survey on the ∼60 pc long bone G47. Contrary to some studies of dense filaments in the Galactic plane, we find that the magnetic field is often not perpendicular to the spine (i.e., the center line of the bone). Fields tend to be perpendicular in the densest areas of active star formation and more parallel or random in other areas. The average field is neither parallel nor perpendicular to the Galactic plane or the bone. The magnetic field strengths along the spine typically vary from ∼20 to ∼100 μmore »G. Magnetic fields tend to be strong enough to suppress collapse along much of the bone, but for areas that are most active in star formation, the fields are notably less able to resist gravitational collapse.« less
  6. ABSTRACT The North Polar Spur (NPS) is one of the largest structures observed in the Milky Way in both the radio and soft X-rays. While several predictions have been made regarding the origin of the NPS, modelling the structure is difficult without precise distance constraints. In this paper, we determine accurate distances to the southern terminus of the NPS and towards latitudes ranging up to 55°. First, we fit for the distance and extinction to stars towards the NPS using optical and near-infrared photometry and Gaia Data Release 2 astrometry. We model these per-star distance–extinction estimates as being caused by dust screens at unknown distances, which we fit for using a nested sampling algorithm. We then compare the extinction to the Spur derived from our 3D dust modelling with integrated independent measures from XMM–Newton X-ray absorption and H i column density measures. We find that we can account for nearly 100 per cent of the total column density of the NPS as lying within 140 pc for latitudes >26° and within 700 pc for latitudes <11°. Based on the results, we conclude that the NPS is not associated with the Galactic Centre or the Fermi bubbles. Instead, it is likely associated, especially at higher latitudes,more »with the Scorpius–Centaurus association.« less
  7. Abstract In this paper, we present the first results from a CARMA high-resolution 12 CO(1-0), 13 CO(1-0), and C 18 O(1-0) molecular line survey of the North America and Pelican (NAP) Nebulae. CARMA observations have been combined with single-dish data from the Purple Mountain 13.7 m telescope, to add short spacings and to produce high-dynamic-range images. We find that the molecular gas is predominantly shaped by the W80 H ii bubble, driven by an O star. Several bright rims noted in the observation are probably remnant molecular clouds, heated and stripped by the massive star. Matching these rims in molecular lines and optical images, we construct a model of the three-dimensional structure of the NAP complex. Two groups of molecular clumps/filaments are on the near side of the bubble: one is being pushed toward us, whereas the other is moving toward the bubble. Another group is on the far side of the bubble, and moving away. The young stellar objects in the Gulf region reside in three different clusters, each hosted by a cloud from one of the three molecular clump groups. Although all gas content in the NAP is impacted by feedback from the central O star, some regionsmore »show no signs of star formation, while other areas clearly exhibit star formation activity. Additional molecular gas being carved by feedback includes cometary structures in the Pelican Head region, and the boomerang features at the boundary of the Gulf region. The results show that the NAP complex is an ideal place for the study of feedback effects on star formation.« less