Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.Central bars and spirals are known to impact significantly the evolution of their host galaxies, both in terms of dynamics and star formation. Their typically different pattern speeds cause them to regularly overlap, which induces fluctuations in bar parameters. Aims.In this paper, we analyze both numerical simulations of disk galaxies and observational data to study the effect of bar-spiral physical overlap on stellar radial migration and star formation in the bar vicinity, as a function of time and galactic azimuth. Methods.We studied three different numerical models, two of which are in a cosmological context, alongside APOGEE DR17 data and the WISE catalog of Galactic HII regions. Results.We find that periodic boosts in stellar radial migration occur when the bar and spiral structures overlap. This mechanism causes net inward migration along the bar leading side, while stars along the bar trailing side and minor axis are shifted outward. The signature of bar-spiral-induced migration is seen between the bar inner Lindbald resonance and well outside its corotation, beyond which other drivers take over. We also find that, in agreement with simulations, APOGEE DR17 stars born at the bar vicinity (which are mostly metal rich) can migrate out to the solar radius while remaining on cold orbits. For the Milky Way, 13% of stars in the solar vicinity with an eccentricity <0.5 were born inside the bar, compared to 5–20% in the simulations. Bar-spiral reconnections also result in periodic starbursts at the bar ends with an enhancement of up to a factor of 4, depending on the strength of the spiral structure. Similarly to the migration bursts, these do not always happen simultaneously at the two sides of the bar, which hints at the importance of odd spiral modes. Data from the WISE catalog suggest this phenomenon is also relevant in our own Galaxy.more » « lessFree, publicly-accessible full text available September 1, 2026
-
ABSTRACT We introduce the southern stellar stream spectroscopy survey (S5), an on-going program to map the kinematics and chemistry of stellar streams in the southern hemisphere. The initial focus of S5 has been spectroscopic observations of recently identified streams within the footprint of the dark energy survey (DES), with the eventual goal of surveying streams across the entire southern sky. Stellar streams are composed of material that has been tidally striped from dwarf galaxies and globular clusters and hence are excellent dynamical probes of the gravitational potential of the Milky Way, as well as providing a detailed snapshot of its accretion history. Observing with the 3.9 m Anglo-Australian Telescope’s 2-degree-Field fibre positioner and AAOmega spectrograph, and combining the precise photometry of DES DR1 with the superb proper motions from Gaia DR2, allows us to conduct an efficient spectroscopic survey to map these stellar streams. So far S5 has mapped nine DES streams and three streams outside of DES; the former are the first spectroscopic observations of these recently discovered streams. In addition to the stream survey, we use spare fibres to undertake a Milky Way halo survey and a low-redshift galaxy survey. This paper presents an overview of the S5 program, describing the scientific motivation for the survey, target selection, observation strategy, data reduction, and survey validation. Finally, we describe early science results on stellar streams and Milky Way halo stars drawn from the survey. Updates on S5, including future public data releases, can be found at http://s5collab.github.io.more » « less
An official website of the United States government
