skip to main content


Search for: All records

Creators/Authors contains: "Zuniga-Navarrete, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Teeth scans are essential for many applications in orthodontics, where the teeth structures are virtualized to facilitate the design and fabrication of the prosthetic piece. Nevertheless, due to the limitations caused by factors such as viewing angles, occlusions, and sensor resolution, the 3D scanned point clouds (PCs) could be noisy or incomplete. Hence, there is a critical need to enhance the quality of the teeth PCs to ensure a suitable dental treatment. Toward this end, we propose a systematic framework including a two-step data augmentation (DA) technique to augment the limited teeth PCs and a hybrid deep learning (DL) method to complete the incomplete PCs. For the two-step DA, we first mirror and combine the PCs based on the bilateral symmetry of the human teeth and then augment the PCs based on an iterative generative adversarial network (GAN). Two filters are designed to avoid the outlier and duplicated PCs during the DA. For the hybrid DL, we first use a deep autoencoder (AE) to represent the PCs. Then, we propose a hybrid approach that selects the best completion to the teeth PCs from AE and a reinforcement learning (RL) agent-controlled GAN. Ablation study is performed to analyze each component’s contribution. We compared our method with other benchmark methods including point cloud network (PCN), cascaded refinement network (CRN), and variational relational point completion network (VRC-Net), and demonstrated that the proposed framework is suitable for completing teeth PCs with good accuracy over different scenarios.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract

    Inkjet printing (IJP) is an additive manufacturing process capable to produce intricate functional structures. The IJP process performance and the quality of the printed parts are considerably affected by the deposited droplets’ volume. Obtaining consistent droplets volume during the process is difficult to achieve because the droplets are prone to variations due to various material properties, process parameters, and environmental conditions. Experimental (i.e., IJP setup observations) and computational (i.e., computational fluid dynamics (CFD)) analysis are used to study the droplets variability; however, they are expensive and computationally inefficient, respectively. The objective of this paper is to propose a framework that can perform fast and accurate droplet volume predictions for unseen IJP driving voltage regimes. A two-step approach is adopted: (1) an emulator is constructed from the physics-based droplet volume simulations to overcome the computational complexity and (2) the emulator is calibrated by incorporating the experimental IJP observations. In particular, a scaled Gaussian stochastic process (s-GaSP) is deployed for the emulation and calibration. The resulting surrogate model is able to rapidly and accurately predict the IJP droplets volume. The proposed methodology is demonstrated by calibrating the simulated data (i.e., CFD droplet simulations) emulator with experimental data from two distinct materials, namely glycerol and isopropyl alcohol.

     
    more » « less