skip to main content


Search for: All records

Creators/Authors contains: "Zuo, Jian-Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here, we introduce a novel defect imaging method based on the cepstral analysis of electron diffuse scattering using an Electron Microscope Pixel Array Detector (EMPAD) detector. 
    more » « less
    Free, publicly-accessible full text available July 22, 2024
  2. This talk focuses on the principles of 4D-STEM based electron nanodiffraction techniques for defect, strain and short-range ordering analysis using electron diffuse scattering [8, 9]. We review recent progress made in scanning electron nanodiffraction (SEND) data collection, new algorithms based on cepstral analysis, and machine learning based electron DP analysis. These progresses will be highlighted using defect detection, and short-range ordering analysis as application examples. The materials of the study are the medium entropy alloy, CrCoNi, which has exceptional low-temperature mechanical strength and ductility. We will show how SEND helps our understanding of non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering, behind the mechanical strength in CrCoNi and how these developments provide general opportunities for an atomistic-structure study in advanced alloys. 
    more » « less
    Free, publicly-accessible full text available July 22, 2024
  3. Free, publicly-accessible full text available March 27, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Abstract Electrochemical intercalation can enable lithium extraction from dilute water sources. However, during extraction, co-intercalation of lithium and sodium ions occurs, and the response of host materials to this process is not fully understood. This aspect limits the rational materials designs for improving lithium extraction. Here, to address this knowledge gap, we report one-dimensional (1D) olivine iron phosphate (FePO 4 ) as a model host to investigate the co-intercalation behavior and demonstrate the control of lithium selectivity through intercalation kinetic manipulations. Via computational and experimental investigations, we show that lithium and sodium tend to phase separate in the host. Exploiting this mechanism, we increase the sodium-ion intercalation energy barrier by using partially filled 1D lithium channels via non-equilibrium solid-solution lithium seeding or remnant lithium in the solid-solution phases. The lithium selectivity enhancement after seeding shows a strong correlation with the fractions of solid-solution phases with high lithium content (i.e., Li x FePO 4 with 0.5 ≤ x < 1). Finally, we also demonstrate that the solid-solution formation pathway depends on the host material’s particle morphology, size and defect content. 
    more » « less
  6. Abstract

    The exceptional mechanical strength of medium/high-entropy alloys has been attributed to hardening in random solid solutions. Here, we evidence non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering. A data-mining approach of electron nanodiffraction enabled the study, which is assisted by neutron scattering, atom probe tomography, and diffraction simulation using first-principles theory models. Two samples, one homogenized and one heat-treated, are observed. In both samples, results reveal two types of short-range-order inside nanoclusters that minimize the Cr–Cr nearest neighbors (L12) or segregate Cr on alternating close-packed planes (L11). The L11is predominant in the homogenized sample, while the L12formation is promoted by heat-treatment, with the latter being accompanied by a dramatic change in dislocation-slip behavior. These findings uncover short-range order and the resulted chemical heterogeneities behind the mechanical strength in CrCoNi, providing general opportunities for atomistic-structure study in concentrated alloys for the design of strong and ductile materials.

     
    more » « less