skip to main content


Search for: All records

Creators/Authors contains: "Zurek, Eva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 13, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    Early quantum mechanical models suggested that pressure drives solids towards free‐electron metal behavior where the ions are locked into simple close‐packed structures. The prediction and subsequent discovery of high‐pressure electrides (HPEs), compounds assuming open structures where the valence electrons are localized in interstitial voids, required a paradigm shift. Our quantum chemical calculations on the iconic insulating Na‐hP4 HPE show that increasing density causes a 3s→3pd electronic transition due to Pauli repulsion between the 1s2s and 3s states, and orthogonality of the 3pd states to the core. The large lobes of the resulting Na‐pd hybrid orbitals point towards the center of an 11‐membered penta‐capped trigonal prism and overlap constructively, forming multicentered bonds, which are responsible for the emergence of the interstitial charge localization in Na‐hP4. These multicentered bonds facilitate the increased density of this phase, which is key for its stabilization under pressure.

     
    more » « less