skip to main content


Search for: All records

Creators/Authors contains: "Zylstra, Erin R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Environmental and anthropogenic factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. The collection of unstructured opportunistic data by volunteer (citizen science) networks provides a solution to address data gaps for locations and time periods during which structured, design‐based data are difficult or impossible to collect.

    To estimate population abundance and distribution at broad spatiotemporal extents, we developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. We validated our approach through simulations and then applied the framework to the eastern North American migratory population of monarch butterflies during their spring breeding period in eastern Texas. Spring climate conditions have been identified as a key driver of monarch population sizes during subsequent summer and winter periods. However, low monarch densities during the spring combined with very few design‐based surveys in the region have limited the ability to isolate effects of spring weather variables on monarchs.

    Simulation results confirmed the ability of our integrated model to accurately and precisely estimate abundance indices and the effects of covariates during locations and time periods in which structured sampling are lacking. In our case study, we combined opportunistic monarch observations during the spring migration and breeding period with structured data from the summer Midwestern breeding grounds. Our model revealed a nonstationary relationship between weather conditions and local monarch abundance during the spring, driven by spatially varying vegetation and temperature conditions.

    Data for widespread and migratory species are often fragmented across multiple monitoring programs, potentially requiring the use of both structured and unstructured data sources to obtain complete geographic coverage. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data.

     
    more » « less
  2. null (Ed.)
    Declines in the abundance and diversity of insects pose a substantial threat to terrestrial ecosystems worldwide. Yet, identifying the causes of these declines has proved difficult, even for well-studied species like monarch butterflies, whose eastern North American population has decreased markedly over the last three decades. Three hypotheses have been proposed to explain the changes observed in the eastern monarch population: loss of milkweed host plants from increased herbicide use, mortality during autumn migration and/or early-winter resettlement and changes in breeding-season climate. Here, we use a hierarchical modelling approach, combining data from >18,000 systematic surveys to evaluate support for each of these hypotheses over a 25-yr period. Between 2004 and 2018, breeding-season weather was nearly seven times more important than other factors in explaining variation in summer population size, which was positively associated with the size of the subsequent overwintering population. Although data limitations prevent definitive evaluation of the factors governing population size between 1994 and 2003 (the period of the steepest monarch decline coinciding with a widespread increase in herbicide use), breeding-season weather was similarly identified as an important driver of monarch population size. If observed changes in spring and summer climate continue, portions of the current breeding range may become inhospitable for monarchs. Our results highlight the increasingly important contribution of a changing climate to insect declines. 
    more » « less
  3. null (Ed.)