- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Jiyu (1)
-
Wang, David (1)
-
and Chen, Hao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep learning models are vulnerable to adversarial examples. Most of current adversarial attacks add pixel-wise perturbations restricted to some L^p-norm, and defense models are evaluated also on adversarial examples restricted inside L^p-norm balls. However, we wish to explore adversarial examples exist beyond L^p-norm balls and their implications for attacks and defenses. In this paper, we focus on adversarial images generated by transformations. We start with color transformation and propose two gradient-based attacks. Since L^p-norm is inappropriate for measuring image quality in the transformation space, we use the similarity between transformations and the Structural Similarity Index. Next, we explore a larger transformation space consisting of combinations of color and affine transformations. We evaluate our transformation attacks on three data sets --- CIFAR10, SVHN, and ImageNet --- and their corresponding models. Finally, we perform retraining defenses to evaluate the strength of our attacks. The results show that transformation attacks are powerful. They find high-quality adversarial images that have higher transferability and misclassification rates than C&W's L^p attacks, especially at high confidence levels. They are also significantly harder to defend against by retraining than C&W's L^p attacks. More importantly, exploring different attack spaces makes it more challenging to train a universally robust model.more » « less
An official website of the United States government

Full Text Available