skip to main content


Title: Explore the Transformation Space for Adversarial Images
Deep learning models are vulnerable to adversarial examples. Most of current adversarial attacks add pixel-wise perturbations restricted to some L^p-norm, and defense models are evaluated also on adversarial examples restricted inside L^p-norm balls. However, we wish to explore adversarial examples exist beyond L^p-norm balls and their implications for attacks and defenses. In this paper, we focus on adversarial images generated by transformations. We start with color transformation and propose two gradient-based attacks. Since L^p-norm is inappropriate for measuring image quality in the transformation space, we use the similarity between transformations and the Structural Similarity Index. Next, we explore a larger transformation space consisting of combinations of color and affine transformations. We evaluate our transformation attacks on three data sets --- CIFAR10, SVHN, and ImageNet --- and their corresponding models. Finally, we perform retraining defenses to evaluate the strength of our attacks. The results show that transformation attacks are powerful. They find high-quality adversarial images that have higher transferability and misclassification rates than C&W's L^p attacks, especially at high confidence levels. They are also significantly harder to defend against by retraining than C&W's L^p attacks. More importantly, exploring different attack spaces makes it more challenging to train a universally robust model.  more » « less
Award ID(s):
1801751
NSF-PAR ID:
10156933
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Conference on Data and Application Security and Privacy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deepfake videos are getting better in quality and can be used for dangerous disinformation campaigns. The pressing need to detect these videos has motivated researchers to develop different types of detection models. Among them, the models that utilize temporal information (i.e., sequence-based models) are more effective at detection than the ones that only detect intra-frame discrepancies. Recent work has shown that the latter detection models can be fooled with adversarial examples, leveraging the rich literature on crafting adversarial (still) images. It is less clear, however, how well these attacks will work on sequence-based models that operate on information taken over multiple frames. In this paper, we explore the effectiveness of the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner 𝐿2-norm attack to fool sequence-based deepfake detector models in both the white-box and black-box settings. The experimental results show that the attacks are effective with a maximum success rate of 99.72% and 67.14% in the white-box and black-box attack scenarios, respectively. This highlights the importance of developing more robust sequence-based deepfake detectors and opens up directions for future research. 
    more » « less
  2. Dong, Yinpeng ; Pang, Tianyu ; Yang, Xiao ; Wong, Eric ; Kolter, Zico ; He, Yuan (Ed.)
    Current machine learning models suffer from evasion attacks (i.e., adversarial examples) raising concerns in security-sensitive settings such as autonomous vehicles. While many countermeasures may look promising, only a few withstand rigorous evaluation. Recently, defenses using random transformations (RT) have shown impressive results, particularly BaRT (Raff et al. 2019) on ImageNet. However, this type of defense has not been rigorously evaluated, leaving its robustness properties poorly understood. The stochasticity of these models also makes evaluation more challenging and many proposed attacks on deterministic models inapplicable. First, we show that the BPDA attack (Athalye, Carlini, and Wagner 2018) used in BaRT’s evaluation is ineffective and likely overestimates its robustness. We then attempt to construct the strongest possible RT defense through the informed selection of transformations and Bayesian optimization for tuning their parameters. Furthermore, we create the strongest possible attack to evaluate our RT defense. Our new attack vastly outperforms the baseline, reducing the accuracy by 83% compared to the 19% reduction by the commonly used EoT attack (4.3× improvement). Our result indicates that the RT defense on Imagenette dataset (ten-class subset of ImageNet) is not robust against adversarial examples. Extending the study further, we use our new attack to adversarially train RT defense (called AdvRT). However, the attack is still not sufficiently strong, and thus, the AdvRT model is no more robust than its RT counterpart. In the process of formulating our defense and attack, we perform several ablation studies and uncover insights that we hope will broadly benefit scientific communities studying stochastic neural networks and their robustness properties. 
    more » « less
  3. The pervasiveness of neural networks (NNs) in critical computer vision and image processing applications makes them very attractive for adversarial manipulation. A large body of existing research thoroughly investigates two broad categories of attacks targeting the integrity of NN models. The first category of attacks, commonly called Adversarial Examples, perturbs the model's inference by carefully adding noise into input examples. In the second category of attacks, adversaries try to manipulate the model during the training process by implanting Trojan backdoors. Researchers show that such attacks pose severe threats to the growing applications of NNs and propose several defenses against each attack type individually. However, such one-sided defense approaches leave potentially unknown risks in real-world scenarios when an adversary can unify different attacks to create new and more lethal ones bypassing existing defenses. In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trusting the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning as well as high-resolution images. 
    more » « less
  4. Abstract

    Deep neural networks (DNNs) are widely used to handle many difficult tasks, such as image classification and malware detection, and achieve outstanding performance. However, recent studies on adversarial examples, which have maliciously undetectable perturbations added to their original samples that are indistinguishable by human eyes but mislead the machine learning approaches, show that machine learning models are vulnerable to security attacks. Though various adversarial retraining techniques have been developed in the past few years, none of them is scalable. In this paper, we propose a new iterative adversarial retraining approach to robustify the model and to reduce the effectiveness of adversarial inputs on DNN models. The proposed method retrains the model with both Gaussian noise augmentation and adversarial generation techniques for better generalization. Furthermore, the ensemble model is utilized during the testing phase in order to increase the robust test accuracy. The results from our extensive experiments demonstrate that the proposed approach increases the robustness of the DNN model against various adversarial attacks, specifically, fast gradient sign attack, Carlini and Wagner (C&W) attack, Projected Gradient Descent (PGD) attack, and DeepFool attack. To be precise, the robust classifier obtained by our proposed approach can maintain a performance accuracy of 99% on average on the standard test set. Moreover, we empirically evaluate the runtime of two of the most effective adversarial attacks, i.e., C&W attack and BIM attack, to find that the C&W attack can utilize GPU for faster adversarial example generation than the BIM attack can. For this reason, we further develop a parallel implementation of the proposed approach. This parallel implementation makes the proposed approach scalable for large datasets and complex models.

     
    more » « less
  5. As machine learning (ML) systems become pervasive, safeguarding their security is critical. However, recently it has been demonstrated that motivated adversaries are able to mislead ML systems by perturbing test data using semantic transformations. While there exists a rich body of research providing provable robustness guarantees for ML models against ℓp norm bounded adversarial perturbations, guarantees against semantic perturbations remain largely underexplored. In this paper, we provide TSS -- a unified framework for certifying ML robustness against general adversarial semantic transformations. First, depending on the properties of each transformation, we divide common transformations into two categories, namely resolvable (e.g., Gaussian blur) and differentially resolvable (e.g., rotation) transformations. For the former, we propose transformation-specific randomized smoothing strategies and obtain strong robustness certification. The latter category covers transformations that involve interpolation errors, and we propose a novel approach based on stratified sampling to certify the robustness. Our framework TSS leverages these certification strategies and combines with consistency-enhanced training to provide rigorous certification of robustness. We conduct extensive experiments on over ten types of challenging semantic transformations and show that TSS significantly outperforms the state of the art. Moreover, to the best of our knowledge, TSS is the first approach that achieves nontrivial certified robustness on the large-scale ImageNet dataset. For instance, our framework achieves 30.4% certified robust accuracy against rotation attack (within ±30∘) on ImageNet. Moreover, to consider a broader range of transformations, we show TSS is also robust against adaptive attacks and unforeseen image corruptions such as CIFAR-10-C and ImageNet-C. 
    more » « less