skip to main content


Search for: All records

Creators/Authors contains: "braverman, Vladimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 7, 2025
  2. Free, publicly-accessible full text available June 1, 2025
  3. Free, publicly-accessible full text available May 7, 2025
  4. Free, publicly-accessible full text available March 1, 2025
  5. Recent research has observed that in machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS) [Cohen, et al., 2021], where the stepsizes are set to be large, resulting in non-monotonic losses induced by the GD iterates. This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime. Despite the presence of local oscillations, we prove that the logistic loss can be minimized by GD with \emph{any} constant stepsize over a long time scale. Furthermore, we prove that with \emph{any} constant stepsize, the GD iterates tend to infinity when projected to a max-margin direction (the hard-margin SVM direction) and converge to a fixed vector that minimizes a strongly convex potential when projected to the orthogonal complement of the max-margin direction. In contrast, we also show that in the EoS regime, GD iterates may diverge catastrophically under the exponential loss, highlighting the superiority of the logistic loss. These theoretical findings are in line with numerical simulations and complement existing theories on the convergence and implicit bias of GD for logistic regressio 
    more » « less
  6. Proceedings of the 40th International Conference on Machine Learning, PMLR 202:37919-37951, 2023. 
    more » « less
  7. Etessami, Kousha ; Feige, Uriel ; Puppis, Gabriele (Ed.)
    Many streaming algorithms provide only a high-probability relative approximation. These two relaxations, of allowing approximation and randomization, seem necessary - for many streaming problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and often trivial) space complexity. A common drawback of these randomized approximate algorithms is that independent executions on the same input have different outputs, that depend on their random coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with high probability the same "canonical" solution. We consider perhaps the most basic problem in data streams, of counting the number of items in a stream of length at most n. Morris’s counter [CACM, 1978] is a randomized approximation algorithm for this problem that uses O(log log n) bits of space, for every fixed approximation factor (greater than 1). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-deterministic approximation algorithms can match this space complexity. Our main result answers their question negatively, and shows that such algorithms must use Ω(√{log n / log log n}) bits of space. Our approach is based on a problem that we call Shift Finding, and may be of independent interest. In this problem, one has query access to a shifted version of a known string F ∈ {0,1}^{3n}, which is guaranteed to start with n zeros and end with n ones, and the goal is to find the unknown shift using a small number of queries. We provide for this problem an algorithm that uses O(√n) queries. It remains open whether poly(log n) queries suffice; if true, then our techniques immediately imply a nearly-tight Ω(log n/log log n) space bound for pseudo-deterministic approximate counting. 
    more » « less