skip to main content

Search for: All records

Creators/Authors contains: "van der Hoorn, Pim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Consider a set of n vertices, where each vertex has a location in $\mathbb{R}^d$ that is sampled uniformly from the unit cube in $\mathbb{R}^d$ , and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights. Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $\mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models. We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. We compute the leading asymptotics of the logarithm of the number of $d$-regular graphs having at least a fixed positive fraction $c$ of the maximum possible number of triangles, and provide a strong structural description of almost all such graphs. When $d$ is constant, we show that such graphs typically consist of many disjoint $(d+1)$-cliques and an almost triangle-free part. When $d$ is allowed to grow with $n$, we show that such graphs typically consist of very dense sets of size $d+o(d)$ together with an almost triangle-free part. This confirms a conjecture of Collet and Eckmann from 2002 and considerably strengthens their observation that the triangles cannot be totally scattered in typical instances of regular graphs with many triangles. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)