skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regular Graphs with Many Triangles are Structured
We compute the leading asymptotics of the logarithm of the number of $$d$$-regular graphs having at least a fixed positive fraction $$c$$ of the maximum possible number of triangles, and provide a strong structural description of almost all such graphs. When $$d$$ is constant, we show that such graphs typically consist of many disjoint $(d+1)$-cliques and an almost triangle-free part. When $$d$$ is allowed to grow with $$n$$, we show that such graphs typically consist of very dense sets of size $d+o(d)$ together with an almost triangle-free part. This confirms a conjecture of Collet and Eckmann from 2002 and considerably strengthens their observation that the triangles cannot be totally scattered in typical instances of regular graphs with many triangles.  more » « less
Award ID(s):
1800738 1741355
PAR ID:
10350674
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
29
Issue:
1
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Triangle counting is a fundamental technique in network analysis, that has received much attention in various input models. The vast majority of triangle counting algorithms are targeted to static graphs. Yet, many real-world graphs are directed and temporal, where edges come with timestamps. Temporal triangles yield much more information, since they account for both the graph topology and the timestamps. Temporal triangle counting has seen a few recent results, but there are varying definitions of temporal triangles. In all cases, temporal triangle patterns enforce constraints on the time interval between edges (in the triangle). We define a general notion (δ1,3,δ1,2,δ2,3)-temporal triangles that allows for separate time constraints for all pairs of edges. Our main result is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that exactly counts all directed variants of (δ1,3,δ1,2,δ2,3)-temporal triangles. Using the classic idea of degeneracy ordering with careful combinatorial arguments, we can prove that DOTTT runs in O(mκlogm) time, where m is the number of (temporal) edges and κ is the graph degeneracy (max core number). Up to log factors, this matches the running time of the best static triangle counters. Moreover, this running time is better than existing. DOTTT has excellent practical behavior and runs twice as fast as existing state-of-the-art temporal triangle counters (and is also more general). For example, DOTTT computes all types of temporal queries in Bitcoin temporal network with half a billion edges in less than an hour on a commodity machine. 
    more » « less
  2. null (Ed.)
    Triangle counting is a fundamental technique in network analysis, that has received much attention in various input models. The vast majority of triangle counting algorithms are targeted to static graphs. Yet, many real-world graphs are directed and temporal, where edges come with timestamps. Temporal triangles yield much more information, since they account for both the graph topology and the timestamps. Temporal triangle counting has seen a few recent results, but there are varying definitions of temporal triangles. In all cases, temporal triangle patterns enforce constraints on the time interval between edges (in the triangle). We define a general notion (δ1,3,δ1,2,δ2,3)-temporal triangles that allows for separate time constraints for all pairs of edges. Our main result is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that exactly counts all directed variants of (δ1,3,δ1,2,δ2,3)-temporal triangles. Using the classic idea of degeneracy ordering with careful combinatorial arguments, we can prove that DOTTT runs in O(mκlogm) time, where m is the number of (temporal) edges and κ is the graph degeneracy (max core number). Up to log factors, this matches the running time of the best static triangle counters. Moreover, this running time is better than existing. DOTTT has excellent practical behavior and runs twice as fast as existing state-of-the-art temporal triangle counters (and is also more general). For example, DOTTT computes all types of temporal queries in Bitcoin temporal network with half a billion edges in less than an hour on a commodity machine. 
    more » « less
  3. In many real-world applications such as social network analysis and online advertising/marketing, one of the most important and popular problems is called influence maximization (IM), which finds a set of k seed users that maximize the expected number of influenced user nodes. In practice, however, maximizing the number of influenced nodes may be far from satisfactory for real applications such as opinion promotion and collective buying. In this paper, we explore the importance of stability and triangles in social networks, and formulate a novel problem in the influence spread scenario, named triangular stability maximization , over social networks, and generalize it to a general triangle influence maximization problem, which is proved to be NP-hard. We develop an efficient reverse influence sampling (RIS) based framework for the triangle IM with theoretical guarantees. To enable unbiased estimators, it demands probabilistic sampling of triangles, that is, sampling triangles according to their probabilities. We propose an edge-based triple sampling approach, which is exactly equivalent to probabilistic sampling and avoids costly triangle enumeration and materialization. We also design several pruning and reduction techniques, as well as a cost-model-guided heuristic algorithm. Extensive experiments and a case study over real-world graphs confirm the effectiveness of our proposed algorithms and the superiority of triangular stability maximization and triangle influence maximization. 
    more » « less
  4. We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost k-cycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4- or 5-cycles in a worst-case instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve super-constant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3-SUM or APSP conjectures. In particular, we prove that k-approximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4-Cycle problem: An infamous open question in fine-grained complexity is to establish any surprising consequences from a subquadratic or even linear-time algorithm for detecting a 4-cycle in a graph. This is arguably one of the simplest problems without a near-linear time algorithm nor a conditional lower bound. We prove that Ω(m1.1194) time is needed for k-cycle detection for all k≥ 4, unless we can detect a triangle in √n-degree graphs in O(n2−δ) time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms. 
    more » « less
  5. Abstract A coupling of random walkers on the same finite graph, who take turns sequentially, is said to be anavoidance couplingif the walkers never collide. Previous studies of these processes have focused almost exclusively on complete graphs, in particular how many walkers an avoidance coupling can include. For other graphs, apart from special cases, it has been unsettled whether even two noncolliding simple random walkers can be coupled. In this article, we construct such a coupling on (i) anyd‐regular graph avoiding a fixed subgraph depending ond; and (ii) any square‐free graph with minimum degree at least three. A corollary of the first result is that a uniformly random regular graph onnvertices admits an avoidance coupling with high probability. 
    more » « less