skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van_Dinther, Ylona"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Numerical simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) have rapidly progressed to address fundamental problems in fault mechanics and provide self‐consistent, physics‐based frameworks to interpret and predict geophysical observations across spatial and temporal scales. To advance SEAS simulations with rigor and reproducibility, we pursue community efforts to verify numerical codes in an expanding suite of benchmarks. Here we present code comparison results from a new set of quasi‐dynamic benchmark problems BP6‐QD‐A/S/C that consider an aseismic slip transient induced by changes in pore fluid pressure consistent with fluid injection and diffusion in fault models with different treatments of fault friction. Ten modeling groups participated in problems BP6‐QD‐A and BP6‐QD‐S considering rate‐and‐state fault models using the aging (‐A) and slip (‐S) law formulations for frictional state evolution, respectively, allowing us to better understand how various computational factors across codes affect the simulated evolution of pore pressure and aseismic slip. Comparisons of problems using the aging versus slip law, and a constant friction coefficient (‐C), illustrate how aseismic slip models can differ in the timing and amount of slip achieved with different treatments of fault friction given the same perturbations in pore fluid pressure. We achieve excellent quantitative agreement across participating codes, with further agreement attained by ensuring sufficiently fine time‐stepping and consistent treatment of boundary conditions. Our benchmark efforts offer a community‐based example to reveal sensitivities of numerical modeling results, which is essential for advancing multi‐physics SEAS models to better understand and construct reliable predictive models of fault dynamics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Dynamic modeling of sequences of earthquakes and aseismic slip (SEAS) provides a self‐consistent, physics‐based framework to connect, interpret, and predict diverse geophysical observations across spatial and temporal scales. Amid growing applications of SEAS models, numerical code verification is essential to ensure reliable simulation results but is often infeasible due to the lack of analytical solutions. Here, we develop two benchmarks for three‐dimensional (3D) SEAS problems to compare and verify numerical codes based on boundary‐element, finite‐element, and finite‐difference methods, in a community initiative. Our benchmarks consider a planar vertical strike‐slip fault obeying a rate‐ and state‐dependent friction law, in a 3D homogeneous, linear elastic whole‐space or half‐space, where spontaneous earthquakes and slow slip arise due to tectonic‐like loading. We use a suite of quasi‐dynamic simulations from 10 modeling groups to assess the agreement during all phases of multiple seismic cycles. We find excellent quantitative agreement among simulated outputs for sufficiently large model domains and small grid spacings. However, discrepancies in rupture fronts of the initial event are influenced by the free surface and various computational factors. The recurrence intervals and nucleation phase of later earthquakes are particularly sensitive to numerical resolution and domain‐size‐dependent loading. Despite such variability, key properties of individual earthquakes, including rupture style, duration, total slip, peak slip rate, and stress drop, are comparable among even marginally resolved simulations. Our benchmark efforts offer a community‐based example to improve numerical simulations and reveal sensitivities of model observables, which are important for advancing SEAS models to better understand earthquake system dynamics. 
    more » « less