skip to main content


Search for: All records

Creators/Authors contains: "Asada, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Grab bars have been widely used for assisting elderly people with mobility and providing support for daily activities. This work aims to expand the notion of grab bars beyond fixed installations by the use of a mobile robot that can place a handlebar at any point in space, to optimally support postural transitions. A survey of elderly people and care professionals indicated that such a device must be sturdy, providing secure support without sliding or tipping over, yet also have a compact footprint to be maneuverable within confined spaces. Here, we propose a novel two-body robot structure, consisting of two small-footprint mobile bases connected by a four bar linkage where handlebars are mounted. Each base measures only 29.2 cm wide, making the robot likely the slimmest ever developed for mobile postural assistance. Through kinematic analysis, it is shown that the two-body structure can bear the entire weight of a human body, meeting required load bearing specifications as a handlebar. A control plan is proposed that is generalizable to all robots with two nonholonomic mobile bases connected by a coupling mechanism. This consists of a leader-follower scheme, in which the bases are connected by a virtual spring, as well as various enhancements to waypoint tracking and dead reckoning that allow the robot to smoothly and accurately follow a series of waypoints. A prototype robot is constructed, and its performance is validated experimentally. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Age-related loss of mobility and an increased risk of falling remain major obstacles for older adults to live independently. Many elderly people lack the coordination and strength necessary to perform activities of daily living, such as getting out of bed or stepping into a bathtub. A traditional solution is to install grab bars around the home. For assisting in bathtub transitions, grab bars are fixed to a bathroom wall. However, they are often too far to reach and stably support the user; the installation locations of grab bars are constrained by the room layout and are often suboptimal. In this paper, we present a mobile robot that provides an older adult with a handlebar located anywhere in space - “Handle Anywhere”. The robot consists of an omnidirectional mobile base attached to a repositionable handlebar. We further develop a methodology to optimally place the handle to provide the maximum support for the elderly user while performing common postural changes. A cost function with a trade-off between mechanical advantage and manipulability of the user’s arm was optimized in terms of the location of the handlebar relative to the user. The methodology requires only a sagittal plane video of the elderly user performing the postural change, and thus is rapid, scalable, and uniquely customizable to each user. A proof-of-concept prototype was built, and the optimization algorithm for handle location was validated experimentally. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. The dynamic complexity of robots and mechatronic systems often pertains to the hybrid nature of dynamics, where governing equations consist of heterogenous equations that are switched depending on the state of the system. Legged robots and manipulator robots experience contact-noncontact discrete transitions, causing switching of governing equations. Analysis of these systems have been a challenge due to the lack of a global, unified model that is amenable to analysis of the global behaviors. Composition operator theory has the potential to provide a global, unified representation by converting them to linear dynamical systems in a lifted space. The current work presents a method for encoding nonlinear heterogenous dynamics into a high dimensional space of observables in the form of Koopman operator. First, a new formula is established for representing the Koopman operator in a Hilbert space by using inner products of observable functions and their composition with the governing state transition function. This formula, called Direct Encoding, allows for converting a class of heterogenous systems directly to a global, unified linear model. Unlike prevalent data-driven methods, where results can vary depending on numerical data, the proposed method is globally valid, not requiring numerical simulation of the original dynamics. A simple example validates the theoretical results, and the method is applied to a multi-cable suspension system. 
    more » « less
    Free, publicly-accessible full text available May 19, 2024
  5. In providing physical assistance to elderly people, ensuring cooperative behavior from the elderly persons is a critical requirement. In sit-to-stand assistance, for example, an older adult must lean forward, so that the body mass can shift towards the feet before a caregiver starts lifting the body. An experienced caregiver guides the older adult through verbal communications and physical interactions, so that the older adult may be cooperative throughout the process. This guidance is of paramount importance and is a major challenge in introducing a robotic aid to the eldercare environment. The wide-scope goal of the current work is to develop an in-telligent eldercare robot that can a) monitor the mental state of an older adult, and b) guide the older adult through an assisting procedure so that he/she can be cooperative in being assisted. The current work presents a basic modeling framework for describing a human's physical behaviors reflecting an internal mental state, and an algorithm for estimating the mental state through interactive observations. The sit-to-stand assistance problem is considered for the initial study. A simple Kalman Filter is constructed for estimating the level of cooperativeness in response to applied cues, with a thresholding scheme being used to make judgments on the cooperativeness state. 
    more » « less