skip to main content


Search for: All records

Creators/Authors contains: "Baer, Sara G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plant community assembly outcomes can be contingent upon establishment year (year effects) due to variations in the environment. Stochastic events such as interannual variability in climate, particularly in the first year of community assembly, contribute to unpredictable community outcomes over the short term, but less is known about whether year effects produce transient or persistent states on a decadal timescale. To test for short‐term (5‐year) and persistent (decadal) effects of establishment year climate on community assembly outcomes, we restored prairie in an agricultural field using the same methods in four different years (2010, 2012, 2014, and 2016) that captured a wide range of initial (planting) year climate conditions. Species composition was measured for 5 years in all four restored prairies and for 9 and 11 years in the two oldest restored prairies established under average precipitation and extreme drought conditions. The composition of the four assembled communities showed large and significant differences in the first year of restoration, followed by dynamic change over time along a similar trajectory due to a temporary flush of annual volunteer species. Sown perennial species eventually came to dominate all communities, but communities remained distinct from each other in year five. Precipitation in June and July of the establishment year explained short‐term coarse community metrics (i.e., species richness and grass/forb cover), with wet establishment years resulting in a higher cover of grasses and dry establishment years resulting in a higher cover of forbs in restored communities. Short‐term differences in community composition, species richness, and grass/forb cover in restorations established under average precipitation and drought conditions persisted for 9–11 years, with low interannual variability in the composition of each prairie over the long term, indicating persistently different states on a decadal timescale. Thus, year effects resulting from stochastic variation in climate can have decadal effects on community assembly outcomes.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. The effects of animal homeostatic function on ecological interactions have not been well-integrated into community ecology. Animals mediate environmental change and stressors through homeostatic shifts in physiology and behavior, which likely shape ecological interactions and plant communities. Animal responses to stressors can alter their habitat use, selective foraging, and stoichiometry, which can in turn affect trophic interactions, plant growth, reproduction, and dispersal. Here, we describe a community physiological ecology framework that integrates classical ecological theory and emerging empirical approaches to test how animal homeostatic responses to environmental change mediate ecological interactions and shape communities. Interdisciplinary approaches could provide essential data to characterize and forecast community responses to rapid global environmental change. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract. Data collected from research networks presentopportunities to test theories and develop models about factors responsiblefor the long-term persistence and vulnerability of soil organic matter(SOM). Synthesizing datasets collected by different research networkspresents opportunities to expand the ecological gradients and scientificbreadth of information available for inquiry. Synthesizing these data ischallenging, especially considering the legacy of soil data that havealready been collected and an expansion of new network science initiatives.To facilitate this effort, here we present the SOils DAta Harmonizationdatabase (SoDaH; https://lter.github.io/som-website, last access: 22 December 2020), a flexible database designed to harmonize diverse SOM datasets frommultiple research networks. SoDaH is built on several network scienceefforts in the United States, but the tools built for SoDaH aim to providean open-access resource to facilitate synthesis of soil carbon data.Moreover, SoDaH allows for individual locations to contribute results fromexperimental manipulations, repeated measurements from long-term studies,and local- to regional-scale gradients across ecosystems or landscapes.Finally, we also provide data visualization and analysis tools that can beused to query and analyze the aggregated database. The SoDaH v1.0 dataset isarchived and availableat https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020). 
    more » « less
  7. Abstract

    Local adaptation is a fundamental phenomenon in evolutionary biology, with relevance to formation of ecotypes, and ultimately new species, and application to restoration and species’ response to climate change. Reciprocal transplant gardens, a common garden in which ecotypes are planted among home and away habitats, are the gold standard to detect local adaptation in populations.

    This review focuses on reciprocal transplant gardens to detect local adaptation, especially in grassland species beginning with early seminal studies of grass ecotypes. Fast forward more than half a century, reciprocal gardens have moved into the genomic era, in which the genetic underpinnings of ecotypic variation can now be uncovered. Opportunities to combine genomic and reciprocal garden approaches offer great potential to shed light on genetic and environmental control of phenotypic variation. Our decadal study of adaptation in a dominant grass across the precipitation gradient of the US Great Plains combined genomic approaches and realistic community settings to shed light on controls over phenotype.

    Common gardens are not without limitations and challenges. A survey of recent studies indicated the modal study uses a tree species, three source sites and one growing site, focuses on one species growing in a monoculture, lasts 3 years, and does not use other experimental manipulations and rarely employs population genetic tools. Reciprocal transplant gardens are even more uncommon, accounting for only 39% of the studies in the literature survey with the rest occurring at a single common site. Reciprocal transplant gardens offer powerful windows into local adaptation when (a) placed across wide environmental gradients to encompass the species’ range; (b) conducted across timespans adequate for detecting responses; (c) employing selection studies among competing ecotypes in community settings and (d) combined with measurements of form and function which ultimately determine success in home and away environments.

    Synthesis. Reciprocal transplant gardens have been one of the foundations in evolutionary biology for the study of adaptation for the last century, and even longer in Europe. Moving forward, reciprocal gardens of foundational non‐model species, combined with genomic analyses and incorporation of biotic factors, have the potential to further revolutionize evolutionary biology. These field experiments will help to predict and model response to climate change and inform restoration practices.

     
    more » « less