Abstract Enhancing resilience in formerly degraded ecosystems is an important goal of restoration ecology. However, evidence for the recovery of resilience and its underlying mechanisms require long‐term experiments and comparison with reference ecosystems. We used data from an experimental prairie restoration that featured long‐term soil heterogeneity manipulations and data from two long‐term experiments located in a comparable remnant (reference) prairie to (1) quantify the recovery of ecosystem functioning (i.e., productivity) relative to remnant prairie, (2) compare the resilience of restored and remnant prairies to a natural drought, and (3) test whether soil heterogeneity enhances resilience of restored prairie. We compared sensitivity and legacy effects between prairie types (remnant and restored) and among four prairie sites that included two remnant prairie sites and prairie restored under homogeneous and heterogeneous soil conditions. We measured sensitivity and resilience as the proportional change in aboveground net primary productivity (ANPP) during and following drought (sensitivity and legacy effects, respectively) relative to average ANPP based on 4 pre‐drought years (2014–2017). In nondrought years, total ANPP was similar between remnant and restored prairie, but remnant prairie had higher grass productivity and lower forb productivity compared with restored prairie. These ANPP patterns generally persisted during drought. The sensitivity of total ANPP to drought was similar between restored and remnant prairie, but grasses in the restored prairie were more sensitive to drought. Post‐drought legacy effects were more positive in the restored prairie, and we attributed this to the more positive and less variable legacy response of forb ANPP in the restored prairie, especially in the heterogeneous soil treatment. Our results suggest that productivity recovers in restored prairie and exhibits similar sensitivity to drought as in remnant prairie. Furthermore, creating heterogeneity promotes forb productivity and enhances restored prairie resilience to drought.
more »
« less
Persistent decadal differences in plant communities assembled under contrasting climate conditions
Abstract Plant community assembly outcomes can be contingent upon establishment year (year effects) due to variations in the environment. Stochastic events such as interannual variability in climate, particularly in the first year of community assembly, contribute to unpredictable community outcomes over the short term, but less is known about whether year effects produce transient or persistent states on a decadal timescale. To test for short‐term (5‐year) and persistent (decadal) effects of establishment year climate on community assembly outcomes, we restored prairie in an agricultural field using the same methods in four different years (2010, 2012, 2014, and 2016) that captured a wide range of initial (planting) year climate conditions. Species composition was measured for 5 years in all four restored prairies and for 9 and 11 years in the two oldest restored prairies established under average precipitation and extreme drought conditions. The composition of the four assembled communities showed large and significant differences in the first year of restoration, followed by dynamic change over time along a similar trajectory due to a temporary flush of annual volunteer species. Sown perennial species eventually came to dominate all communities, but communities remained distinct from each other in year five. Precipitation in June and July of the establishment year explained short‐term coarse community metrics (i.e., species richness and grass/forb cover), with wet establishment years resulting in a higher cover of grasses and dry establishment years resulting in a higher cover of forbs in restored communities. Short‐term differences in community composition, species richness, and grass/forb cover in restorations established under average precipitation and drought conditions persisted for 9–11 years, with low interannual variability in the composition of each prairie over the long term, indicating persistently different states on a decadal timescale. Thus, year effects resulting from stochastic variation in climate can have decadal effects on community assembly outcomes.
more »
« less
- Award ID(s):
- 2025849
- PAR ID:
- 10404984
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecological Applications
- Volume:
- 33
- Issue:
- 3
- ISSN:
- 1051-0761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Restoration outcomes are notoriously difficult to predict and often fall short of restoration goals. Post‐restoration management actions may help overcome barriers to successful establishment, such as dispersal limitations and competition. Layering these management actions to increase the intensity of disturbances may improve restoration outcomes, but they also can be expensive and laborious, depending on the intensity or number of actions implemented. We investigated a series of disturbance intensities on previously restored tallgrass prairies using a randomized block design. Combinations of seeding, harrowing (low intensity disturbance), disking (high intensity disturbance), and herbicide were implemented after a prescribed burn. After 11–14 years, we measured percent cover of all species present to determine long‐term effectiveness. We found that the high intensity disturbance treatment increased native species richness by over 40% and native species Shannon diversity by 15% when compared to control plots. Overall diversity and composition of the plots varied among sites that were treated in different years, indicating that seed mix composition and site conditions were still likely important determinants of community outcomes. Regardless, the consistency of the high intensity management actions to increase site richness and diversity after more than a decade may allow managers to achieve restoration goals, even if later management is limited, justifying the time and resources to enhance existing restorations.more » « less
-
Grazing as a management tool is often intended to alter plant community dynamics through preferential foraging. Bison diet in the western United States has been well studied, especially in short and mixed grass remnant prairies. However, there is little known about what bison consume in restored and tallgrass prairies. As bison reintroductions are used more commonly in eastern tallgrass prairies, it is important to understand their diet to predict future impacts on prairie plant communities. This study aims to understand bison diet across different seasons, and asks whether diet differs among male and female, and differently aged bison. We used stable isotope analysis to quantify δ13C and δ15N in plants and used a Bayesian isotope mixing model to estimate bison diet. We found bulls relied more heavily on C4plants and wetland plants than cows, which relied more heavily on forbs, but no differences in diet between ages. Our analysis shows that bison primarily grazed on C4grasses throughout the late spring and summer. However, bison foraged more on wetland species and forbs in the late summer and fall. This change in diet could have implications for wetland species and habitats, through dung inputs and trampling. The relatively high reliance on forbs for nearly one‐third of bison diet could mean intended impacts of reintroduced bison such as increased plant diversity through preferential grazing on grasses could be dampened. Managers reintroducing bison to restored prairie ecosystems should ensure adequate wetland and forb species, in addition to a mix of grasses.more » « less
-
Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition – whether abiotic or host-dependent – remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.more » « less
-
Abstract Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.more » « less
An official website of the United States government
