skip to main content


Search for: All records

Creators/Authors contains: "Bartos, Imre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Precursors have been observed seconds to minutes before some short gamma-ray bursts. While the precursor origins remain unknown, one explanation relies on the resonance of neutron star pulsational modes with the tidal forces during the inspiral phase of a compact binary merger. In this paper, we present a model for short gamma-ray burst precursors that relies on tidally resonant neutron star oceans. In this scenario, the onset of tidal resonance in the crust–ocean interface mode ignites the precursor flare, possibly through the interaction between the excited neutron star ocean and the surface magnetic fields. From just the precursor total energy, the time before the main event, and a detected quasi-periodic oscillation frequency, we may constrain the binary parameters and neutron star ocean properties. Our model can immediately distinguish neutron star–black hole mergers from binary neutron star mergers without gravitational wave detection. We apply our model to GRB 211211A, the recently detected long duration short gamma-ray burst with a quasi-periodic precursor, and explore the parameters of this system. The precursor of GRB 211211A is consistent with a tidally resonant neutron star ocean explanation that requires an extreme mass ratio neutron star–black hole merger and a high-mass neutron star. While difficult to reconcile with the main gamma-ray burst and associated kilonova, our results constrain the possible precursor mechanisms in this system. A systematic study of short gamma-ray burst precursors with the model presented here can test precursor origin and probe the possible connection between gamma-ray bursts and neutron star–black hole mergers.

     
    more » « less
  2. Abstract The origin of stellar-mass black hole mergers discovered through gravitational waves is being widely debated. Mergers in the disks of active galactic nuclei (AGNs) represent a promising source of origin, with possible observational clues in the gravitational-wave data. Beyond gravitational waves, a unique signature of AGN-assisted mergers is electromagnetic emission from the accreting black holes. Here we show that jets launched by accreting black holes merging in an AGN disk can be detected as peculiar transients by infrared, optical, and X-ray observatories. We further show that this emission mechanism can explain the possible associations between gravitational-wave events and the optical transient ZTF 19abanrhr and the proposed gamma-ray counterparts GW150914-GBM and LVT151012-GBM. We demonstrate how these associations, if genuine, can be used to reconstruct the properties of these events’ environments. Searching for infrared and X-ray counterparts to similar electromagnetic transients in the future, once host galaxies are localized by optical observations, could provide a smoking-gun signature of the mergers’ AGN origin. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract Stellar-mass black holes (BHs) are predicted to be embedded in the disks of active galactic nuclei (AGNs) due to gravitational drag and in situ star formation. However, clear evidence for AGN disk-embedded BHs is currently lacking. Here, as possible electromagnetic signatures of these BHs, we investigate breakout emission from shocks emerging around Blandford–Znajek jets launched from accreting BHs in AGN disks. We assume that most of the highly super-Eddington flow reaches the BH and produces a strong jet, and the jet produces feedback that shuts off accretion and thus leads to episodic flaring. These assumptions, while poorly understood at present, yield observable consequences that can probe the presence of AGN-embedded BHs as well as the accretion process itself. They predict a breakout emission characterized by luminous thermal emission in the X-ray bands and bright broadband nonthermal emission from the infrared to the gamma-ray bands. The flare duration depends on the BH’s distance r from the central supermassive BH, varying between 10 3 –10 6 s for r ∼ 0.01–1 pc. This emission can be discovered by current and future infrared, optical, and X-ray wide-field surveys and monitoring campaigns of nearby AGNs. 
    more » « less
  4. Abstract

    The multimessenger detection of GW170817 showed that binary neutron star (BNS) mergers are progenitors of (at least some) short gamma-ray bursts (GRBs), and that short GRB jets (and their afterglows) can have structures (and observational properties) more complex than predicted by the standard top-hat jet scenario. Indeed, the emission from the structured jet launched in GW170817 peaked in the radio band (centimeter wavelengths) at ≈100 days since merger—a timescale much longer than the typical time span of radio follow-up observations of short GRBs. Moreover, radio searches for a potential late-time radio flare from the fast tail of the neutron-rich debris that powered the kilonova associated with GW170817 (AT 2017gfo) have extended to even longer timescales (years after the merger). In light of this, here we present the results of an observational campaign targeting a sample of seven, years-old GRBs in the Swift/BAT sample with no redshift measurements and no promptly identified X-ray counterpart. Our goal is to assess whether this sample of short GRBs could harbor nearby BNS mergers, searching for the late-time radio emission expected from their ejecta. We found one radio candidate counterpart for one of the GRBs in our sample, GRB 111126A, though an origin related to emission from star formation or from an active galactic nucleus in its host galaxy cannot be excluded without further observations.

     
    more » « less
  5. Abstract

    On 2022 September 18, an alert by the IceCube Collaboration indicated that a ∼170 TeV neutrino arrived in directional coincidence with the blazar TXS 0506+056. This event adds to two previous pieces of evidence that TXS 0506+056 is a neutrino emitter, i.e., a neutrino alert from its direction on 2017 September 22, and a 3σsignature of a dozen neutrinos in 2014/2015. De Bruijn el al. showed that two previous neutrino emission episodes from this blazar could be due to a supermassive binary black hole (SMBBH) central engine where jet precession close to the final coalescence of the binary results in periodic emission. This model predicted a new emission episode consistent with the 2022 September 18 neutrino observation by IceCube. Here, we show that the neutrino cadence of TXS 0506+056 is consistent with an SMBBH origin. We find that the emission episodes are consistent with an SMBBH with mass ratiosq≲ 0.3 for a total black hole mass ofMtot≳ 3 · 108M. For the first time, we calculate the characteristic strain of the gravitational wave emission of the binary, and show that the merger could be detectable by LISA for black hole masses <5 · 108Mif the mass ratios are in the range 0.1 ≲q≲ 0.3. We predict that there can be a neutrino flare existing in the still-to-be-analyzed IceCube data peaking some time between 2019 August and 2021 January if a precessing jet is responsible for all three detected emission episodes. The next flare is expected to peak in the period 2023 January to 2026 August. Further observation will make it possible to constrain the mass ratio as a function of the total mass of the black hole more precisely and would open the window toward the preparation of the detection of SMBBH mergers.

     
    more » « less
  6. ABSTRACT

    Neutron stars in astrophysical binary systems represent exciting sources for multimessenger astrophysics. A potential source of electromagnetic transients from compact binary systems is the neutron star ocean, the external fluid layer encasing a neutron star. We present a groundwork study into tidal waves in neutron star oceans and their consequences. Specifically, we investigate how oscillation modes in neutron star oceans can be tidally excited during compact binary inspirals and parabolic encounters. We find that neutron star oceans can sustain tidal waves with frequencies between 0.01 and 20 Hz. Our results suggest that tidally resonant neutron star ocean waves may serve as a never-before studied source of precursor electromagnetic emission prior to neutron star–black hole and binary neutron star mergers. If accompanied by electromagnetic flares, tidally resonant neutron star ocean waves, whose energy budget can reach 1046 erg, may serve as early warning signs (≳1 min before merger) for compact binary mergers. Similarly, excited ocean tidal waves will coincide with neutron star parabolic encounters. Depending on the neutron star ocean model and a flare emission scenario, tidally resonant ocean flares may be detectable by Fermi and Nuclear Spectroscopic Telescope Array (NuSTAR) out to ≳100 Mpc with detection rates as high as ∼7 yr−1 for binary neutron stars and ∼0.6 yr−1 for neutron star–black hole binaries. Observations of emission from neutron star ocean tidal waves along with gravitational waves will provide insight into the equation of state at the neutron star surface, the composition of neutron star oceans and crusts, and neutron star geophysics.

     
    more » « less
  7. Abstract The joint detection of gravitational waves and the gamma-ray counterpart of a binary neutron star merger event, GW170817, unambiguously validates the connection between short gamma-ray bursts and compact binary object (CBO) mergers. We focus on a special scenario where short gamma-ray bursts produced by CBO mergers are embedded in disks of active galactic nuclei (AGNs), and we investigate the γ -ray emission produced in the internal dissipation region via synchrotron, synchrotron self-Compton, and external inverse Compton (EIC) processes. In this scenario, isotropic thermal photons from the AGN disks contribute to the EIC component. We show that a low-density cavity can be formed in the migration traps, leading to the embedded mergers producing successful GRB jets. We find that the EIC component would dominate the GeV emission for typical CBO mergers with an isotropic-equivalent luminosity of L j ,iso = 10 48.5 erg s −1 that are located close to the central supermassive black hole. Considering a long-lasting jet of duration T dur ∼ 10 2 –10 3 s, we find that the future Cherenkov Telescope Array (CTA) will be able to detect its 25–100 GeV emission out to a redshift z = 1.0. In the optimistic case, it is possible to detect the on-axis extended emission simultaneously with GWs within one decade using MAGIC, H.E.S.S., VERITAS, CTA, and LHAASO-WCDA. Early diagnosis of prompt emissions with Fermi-GBM and HAWC can provide valuable directional information for the follow-up observations. 
    more » « less