skip to main content


Search for: All records

Creators/Authors contains: "Budker, Dmitry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a new technique to study the adsorption and desorption of ions and electrons on insulating surfaces in the presence of strong electric fields in cryoliquids. The experimental design consists of a compact cryostat coupled with a sensitive electro-optical Kerr device to monitor the stability of the electric fields. The behavior of nitrogen and helium ions on a poly(methyl methacrylate) (PMMA) surface was compared to a PMMA surface coated with a mixture of deuterated polystyrene and deuterated polybutadiene. Ion accumulation and removal on these surfaces were unambiguously observed. Within the precision of the data, both surfaces behave similarly for the physisorbed ions. The setup was also used to measure the (quasi-)static dielectric constant of PMMA at T ≈ 70 K. The impact of the ion adsorption on the search for a neutron permanent electric dipole moment in a cryogenic environment, such as the nEDM@SNS experiment, is discussed.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Abstract

    Galactic dark matter may consist of axionlike particles (ALPs) that can be described as an “ultralight bosonic field” oscillating at the ALP Compton frequency. The ALP field can be searched for using nuclear magnetic resonance (NMR), where resonant precession of spins of a polarized sample can be sensitively detected. The ALP mass to which the experiment is sensitive is scanned by sweeping the bias magnetic field. The scanning either results in detection of ALP dark matter or rules out ALP dark matter with sufficiently strong couplings to nuclear spins over the range of ALP masses corresponding to the covered span of Larmor frequencies. In this work, scanning strategies are analyzed with the goal of optimizing the parameter‐space coverage via a proper choice of experimental parameters (e.g., the effective transverse relaxation time).

     
    more » « less
  6. Abstract

    We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time-dependent signatures of dark scalar fields that manifest as anomalies in the relative frequencies of station-based and ground-based clocks. This opens the possibility of probing models of new physics that are inaccessible to purely ground-based OAC experiments where a dark scalar field may potentially be strongly screened near Earth’s surface. This unique enhancement of sensitivity to potential dark matter candidates harnesses the potential of space-based OACs.

     
    more » « less