In a broad class of theories, the accumulation of ultralight dark matter (ULDM) with particles of mass leads to the formation of long-lived bound states known as boson stars. When the ULDM exhibits self-interactions, prodigious bursts of energy carried by relativistic bosons are released from collapsing boson stars in bosenova explosions. We extensively explore the potential reach of terrestrial and space-based experiments for detecting transient signatures of emitted relativistic bursts of scalar particles, including ULDM coupled to photons, electrons, and gluons, capturing a wide range of motivated theories. For the scenario of relaxion ULDM, we demonstrate that upcoming experiments and technology such as nuclear clocks as well as space-based interferometers will be able to sensitively probe orders of magnitude in the ULDM coupling-mass parameter space, challenging to study otherwise, by detecting signatures of transient bosenova events. Detection of a bosenova event may also give information about microphysics properties of that would otherwise be difficult with typical direct detection methods. Our analysis can be readily extended to different scenarios of relativistic scalar particle emission. Published by the American Physical Society2024
more »
« less
Optical atomic clock aboard an Earth-orbiting space station (OACESS): enhancing searches for physics beyond the standard model in space
Abstract We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time-dependent signatures of dark scalar fields that manifest as anomalies in the relative frequencies of station-based and ground-based clocks. This opens the possibility of probing models of new physics that are inaccessible to purely ground-based OAC experiments where a dark scalar field may potentially be strongly screened near Earth’s surface. This unique enhancement of sensitivity to potential dark matter candidates harnesses the potential of space-based OACs.
more »
« less
- PAR ID:
- 10380932
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Quantum Science and Technology
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2058-9565
- Page Range / eLocation ID:
- Article No. 014003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We propose a new dark matter contender within the context of the so-called “dark dimension”, an innovative 5-dimensional construct that has a compact space with characteristic length-scale in the micron range. The new dark matter candidate is the radion, a bulk scalar field whose quintessence-like potential drives an inflationary phase described by a 5-dimensional de Sitter (or approximate) solution of Einstein equations. We show that the radion could be ultralight and thereby serve as a fuzzy dark matter candidate. We advocate a simple cosmological production mechanism bringing into play unstable Kaluza–Klein graviton towers which are fueled by the decay of the inflaton.more » « less
-
Abstract LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravitational-wave astronomy. As the first anticipated space-based gravitational-wave detector, it will expand our view to the millihertz gravitational-wave sky, where a spectacular variety of interesting new sources abound: from millions of ultra-compact binaries in our Galaxy, to mergers of massive black holes at cosmological distances; from the early inspirals of stellar-mass black holes that will ultimately venture into the ground-based detectors’ view to the death spiral of compact objects into massive black holes, and many sources in between. Central to realising LISA’s discovery potential are waveform models, the theoretical and phenomenological predictions of the pattern of gravitational waves that these sources emit. This White Paper is presented on behalf of the Waveform Working Group for the LISA Consortium. It provides a review of the current state of waveform models for LISA sources, and describes the significant challenges that must yet be overcome.more » « less
-
A<sc>bstract</sc> We discuss models of ultralight scalar Dark Matter (DM) with linear and quadratic couplings to the Standard Model (SM). In addition to studying the phenomenology of linear and quadratic interactions separately, we examine their interplay. We review the different experiments that can probe such interactions and present the current and expected future bounds on the parameter space. In particular, we discuss the scalar field solution presented in [A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik and P. Wolf, Phys.Rev.D 98 (2018) 6, 064051], and extend it to theories that capture both the linear and the quadratic couplings of the Dark Matter (DM) field to the Standard Model (SM). Furthermore, we discuss the theoretical aspects and the corresponding challenges for natural models in which the quadratic interactions are of phenomenological importance.more » « less
-
Abstract Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality.more » « less
An official website of the United States government
