skip to main content


Search for: All records

Creators/Authors contains: "Chmiel, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Unlearning Racism in Geosciences (URGE) program guides groups of geoscientists as they draft, implement, and assess anti‐racist policies and resources for their workplace. Some participating Geoscientists of Color (GoC) shared concerns about microaggression, tokenism, and power struggles within their groups. These reports led us to collect and analyze data that describe the experiences of GoC in URGE. The data are from five discussion groups and two surveys. Our analyses revealed that participating GoC want to continue working with White colleagues on anti‐racist work. GoC want White colleagues not to shy away from doing anti‐racist work. Instead, GoC want White colleagues (a) to create and adhere to robust behavioral codes of conduct, (b) to focus discussions on anti‐racism, (c) to act on anti‐racism initiatives, (d) not to prompt GoC to educate them or reveal trauma, and (e) to refrain from microaggressions and tokenism. These desired outcomes were achieved in some groups with varying degrees of success. Correcting a history of mistrust relating to racism and anti‐racism action is key to implementing and assessing effective anti‐racist policies and resources. This requires leadership support, following through on anti‐racism action, and deepening relationships between GoC and White colleagues. Future anti‐racist programs should spend a substantial amount of time on and demonstrate the importance of training participants how to discuss racism effectively and how to create and adhere to robust behavioral codes of conduct. Future programs should also explore developing a robust program‐wide code of conduct that includes a policy for reporting offenses.

     
    more » « less
  2. Abstract. Over the past decade, the GEOTRACES and wider trace metalgeochemical community has made substantial contributions towardsconstraining the marine cobalt (Co) cycle and its major biogeochemicalprocesses. However, few Co speciation studies have been conducted in theNorth and equatorial Pacific Ocean, a vast portion of the world's oceans byvolume and an important end-member of deep thermohaline circulation.Dissolved Co (dCo) samples, including total dissolved and labile Co, weremeasured at-sea during the GEOTRACES Pacific Meridional Transect (GP15) expedition along the 152∘ W longitudinal from 56∘ N to20∘ S. Along this transect, upper-ocean dCo (σ0<26) was linearly correlated with dissolved phosphate (slope = 82±3, µmol : mol) due to phytoplankton uptake and remineralization.As depth increased, dCo concentrations became increasingly decoupled fromphosphate concentrations due to co-scavenging with manganese oxide particlesin the mesopelagic. The transect revealed an organically bound coastalsource of dCo to the Alaskan Stream associated with low-salinity waters. Anintermediate-depth hydrothermal flux of dCo was observed off the Hawaiiancoast at the Loihi Seamount, and the elevated dCo was correlated withpotential xs3He at and above the vent site; however, the Loihi Seamountlikely did not represent a major source of Co to the Pacific basin. Elevatedconcentrations of dCo within oxygen minimum zones (OMZs) in the equatorialNorth and South Pacific were consistent with the suppression of oxidativescavenging, and we estimate that future deoxygenation could increase the OMZdCo inventory by 18 % to 36 % over the next century. In Pacific Deep Water(PDW), a fraction of elevated ligand-bound dCo appeared protected fromscavenging by the high biogenic particle flux in the North Pacific basin.This finding is counter to previous expectations of low dCo concentrationsin the deep Pacific due to scavenging over thermohaline circulation.Compared to a Co global biogeochemical model, the observed transectdisplayed more extreme inventories and fluxes of dCo than predicted by themodel, suggesting a highly dynamic Pacific Co cycle. 
    more » « less
  3. Abstract

    The Southern Ocean plays a critical role in regulating global uptake of atmospheric CO2. Trace elements like iron (Fe), cobalt (Co), and manganese (Mn) have been shown to modulate this primary productivity. Despite limited data, the vertical profiles for Mn, Fe, and Co in the Ross Sea show no evidence of scavenging, as typically observed in oceanic sites. This was previously attributed to low‐particle abundance and/or by mixing rates exceeding scavenging rates. Scavenging of some trace metals such as cobalt (Co) is thought to be largely governed by Mn (oxyhydr)oxides, assumed to be the main component of particulate Mn (pMn). However, our data show that pMn has an average oxidation state below 3 and with nondetectable Mn oxides. In addition, soluble Co profiles show no evidence of scavenging and Co uptake measurements show little Co uptake in the euphotic zone and low/no scavenging at depth. Instead, high concentrations of dissolved Mn (dMn, up to 90 nM), which is primarily complexed as Mn(III)‐L (up to 100%), are observed. Average dMn concentrations (10 ± 14 nM) are highest in bottom and surface waters. Manganese sources may include sediments and sea‐ice melt, as elevated dMn was measured in sea ice (12 nM) compared to its surrounding waters (3 nM), and sea ice dMn was 97% Mn(III)‐L. We contend that the lack of Co scavenging in the Ross Sea is due to a unique Mn redox cycle that favors the stabilization of Mn(III)‐complexes at the expense of Mn oxide particle formation.

     
    more » « less
  4. Abstract

    Atmospheric deposition represents a major input for micronutrient trace elements (TEs) to the surface ocean and is often quantified indirectly through measurements of aerosol TE concentrations. Sea spray aerosol (SSA) dominates aerosol mass concentration over much of the global ocean, but few studies have assessed its contribution to aerosol TE loading, which could result in overestimates of “new” TE inputs. Low‐mineral aerosol concentrations measured during the U.S. GEOTRACES Pacific Meridional Transect (GP15; 152°W, 56°N to 20°S), along with concurrent towfish sampling of surface seawater, provided an opportunity to investigate this aspect of TE biogeochemical cycling. Central Pacific Ocean surface seawater Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb concentrations were combined with aerosol Na data to calculate a “recycled” SSA contribution to aerosol TE loading. Only vanadium was calculated to have a SSA contribution averaging >1% along the transect (mean of 1.5%). We derive scaling factors from previous studies on TE enrichments in the sea surface microlayer and in freshly produced SSA to assess the broader potential for SSA contributions to aerosol TE loading. Maximum applied scaling factors suggest that SSA could contribute significantly to the aerosol loading of some elements (notably V, Cu, and Pb), while for others (e.g., Fe and Al), SSA contributions largely remained <1%. Our study highlights that a lack of focused measurements of TEs in SSA limits our ability to quantify this component of marine aerosol loading and the associated potential for overestimating new TE inputs from atmospheric deposition.

     
    more » « less