skip to main content


Search for: All records

Creators/Authors contains: "Della Valle, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of ${\it M}^{\rm max}_{g}= -17.84$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (<200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙. 
    more » « less
  3. Aims . We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods . Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results . SN 2016hnk is consistent with being a subluminous ( M B  = −16.7 mag, s B V =0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca  II ] λ λ 7291,7324 doublet with a Doppler shift of 700 km s −1 . Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ( M Ch ) carbon-oxygen white dwarf that produced 0.108 M ⊙ of 56 Ni. Our modeling suggests that the narrow [Ca  II ] features observed in the nebular spectrum are associated with 48 Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M Ch limit. 
    more » « less
  4. ABSTRACT We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of ≲1500 km s−1, and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of Mr ∼ −15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of 56Co, but is comparable to that expected from accretion power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large 56Ni production of 0.075 M⊙ from an ∼15 M⊙ red supergiant progenitor typical of other SNe II, or (ii) a relatively compact ∼40 M⊙ star, explosion energy of 1 foe, and 0.08 M⊙ of 56Ni. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of ∼0.5 × 10−8 M⊙ s−1. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Aria is a plant hosting a$${350}\,\hbox {m}$$350mcryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of$${^{39}\hbox {Ar}}$$39Arin argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed,$${^{39}\hbox {Ar}}$$39Aris a$$\beta $$β-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant.

     
    more » « less
  7. ABSTRACT

    We report on the search for the optical counterpart of the gravitational event GW170814, which was carried out with the VLT Survey Telescope (VST) by the GRAvitational Wave Inaf TeAm. Observations started 17.5 h after the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo alert and we covered an area of 99 deg2 that encloses $\sim 77{{\ \rm per\ cent}}$ and $\sim 59{{\ \rm per\ cent}}$ of the initial and refined localization probability regions, respectively. A total of six epochs were secured over nearly two months. The survey reached an average limiting magnitude of 22 AB mag in the r band. After assuming the model described in Perna, Lazzati & Farr, that derives as possible optical counterpart of a BBH (binary black hole) event a transient source declining in about one day, we have computed a survey efficiency of about $5{{\ \rm per\ cent}}$. This paper describes the VST observational strategy and the results obtained by our analysis pipelines developed to search for optical transients in multi-epoch images. We report the catalogue of the candidates with possible identifications based on light-curve fitting. We have identified two dozens of SNe, nine AGNs, and one QSO. Nineteen transients characterized by a single detection were not classified. We have restricted our analysis only to the candidates that fall into the refined localization map. None out of 39 left candidates could be positively associated with GW170814. This result implies that the possible emission of optical radiation from a BBH merger had to be fainter than r ∼ 22 (Loptical ∼ 1.4 × 1042 erg s−1) on a time interval ranging from a few hours up to two months after the gravitational wave event.

     
    more » « less