We present optical photometry and spectroscopy of the Type II supernova ASASSN-14jb, together with Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) integral field observations of its host galaxy and a nebular-phase spectrum. This supernova, in the nearby galaxy ESO 467-G051 ( z = 0.006), was discovered and followed-up by the all-sky automated survey for supernovae (ASAS-SN). We obtained well-sampled las cumbres network (LCOGTN) B V g r i and Swift w 2 m 1 w 1 u b v optical, near-UV/optical light curves, and several optical spectra in the early photospheric phases. The transient ASASSN-14jb exploded ∼2 kpc above the star-forming disk of ESO 467-G051, an edge-on disk galaxy. The large projected distance from the disk of the supernova position and the non-detection of any H II region in a 1.4 kpc radius in projection are in conflict with the standard environment of core-collapse supernova progenitors and suggests the possible scenario that the progenitor received a kick in a binary interaction. We present analysis of the optical light curves and spectra, from which we derived a distance of 25 ± 2 Mpc using state-of-the-art empirical methods for Type II SNe, physical properties of the SN explosion ( 56 Ni mass, explosion energy, and ejected mass), and properties of the progenitor; namely the progenitor radius, mass, and metallicity. Our analysis yields a 56 Ni mass of 0.0210 ± 0.0025 M ⊙ , an explosion energy of ≈0.25 × 10 51 ergs, and an ejected mass of ≈6 M ⊙ . We also constrained the progenitor radius to be R * = 580 ± 28 R ⊙ which seems to be consistent with the sub-Solar metallicity of 0.3 ± 0.1 Z ⊙ derived from the supernova Fe II λ 5018 line. The nebular spectrum constrains strongly the progenitor mass to be in the range 10–12 M ⊙ . From the Spitzer data archive we detect ASASSN-14jb ≈330 days past explosion and we derived a total dust mass of 10 −4 M ⊙ from the 3.6 μ m and 4.5 μ m photometry. Using the F U V , N U V , B V g r i , K s , 3.6 μ m, and 4.5 μ m total magnitudes for the host galaxy, we fit stellar population synthesis models, which give an estimate of M * ≈ 1 × 10 9 M ⊙ , an age of 3.2 Gyr, and a SFR ≈0.07 M ⊙ yr −1 . We also discuss the low oxygen abundance of the host galaxy derived from the MUSE data, having an average of 12 + log(O/H) = 8.27 +0.16 −0.20 using the O 3 N 2 diagnostic with strong line methods. We compared it with the supernova spectra, which is also consistent with a sub-Solar metallicity progenitor. Following recent observations of extraplanar H II regions in nearby edge-on galaxies, we derived the metallicity offset from the disk, being positive, but consistent with zero at 2 σ , suggesting enrichment from disk outflows. We finally discuss the possible scenarios for the unusual environment for ASASSN-14jb and conclude that either the in-situ star formation or runaway scenario would imply a low-mass progenitor, agreeing with our estimate from the supernova nebular spectrum. Regardless of the true origin of ASASSN-14jb, we show that the detailed study of the environment roughly agree with the stronger constraints from the observation of the transient.
more »
« less
Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk
Aims . We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods . Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results . SN 2016hnk is consistent with being a subluminous ( M B = −16.7 mag, s B V =0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II ] λ λ 7291,7324 doublet with a Doppler shift of 700 km s −1 . Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ( M Ch ) carbon-oxygen white dwarf that produced 0.108 M ⊙ of 56 Ni. Our modeling suggests that the narrow [Ca II ] features observed in the nebular spectrum are associated with 48 Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M Ch limit.
more »
« less
- NSF-PAR ID:
- 10157785
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 630
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Type Iax supernovae (SNe Iax) are the most common class of peculiar SNe. While they are thought to be thermonuclear white-dwarf (WD) SNe, SNe Iax are observationally similar to, but distinct from SNe Ia. Unlike SNe Ia, where roughly 30 per cent occur in early-type galaxies, only one SN Iax has been discovered in an early-type galaxy, suggesting a relatively short delay time and a distinct progenitor system. Furthermore, one SN Iax progenitor system has been detected in pre-explosion images with its properties consistent with either of two models: a short-lived (<100 Myr) progenitor system consisting of a WD primary and a He-star companion, or a singular Wolf–Rayet progenitor star. Using deep Hubble Space Telescope images of nine nearby SN Iax host galaxies, we measure the properties of stars within 200 pc of the SN position. The ages of local stars, some of which formed with the SN progenitor system, can constrain the time between star formation and SN, known as the delay time. We compare the local stellar properties to synthetic photometry of single-stellar populations, fitting to a range of possible delay times for each SN. With this sample, we uniquely constrain the delay-time distribution for SNe Iax, with a median and 1σ confidence interval delay time of $63_{- 15}^{+ 58} \times 10^{6}$ yr. The measured delay-time distribution provides an excellent constraint on the progenitor system for the class, indicating a preference for a WD progenitor system over a Wolf–Rayet progenitor star.more » « less
-
Abstract A thermonuclear explosion triggered by a He-shell detonation on a carbon–oxygen white-dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during He-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a subluminous peculiar Type I supernova consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the i -band peak absolute magnitude is derived to be around −17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O i λ 7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700–10500 Å is detected in the near-infrared spectrum and is likely from the unburnt He in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar-mass white dwarf with a thick He shell, while the photometric evolution is not well described by existing models.more » « less
-
Abstract We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g -band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An H α -emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular H α profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3 % − 0.1 + 0.3 of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies.more » « less
-
Context. At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit ( M Ch ≈ 1.4 M ⊙ ) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between M Ch and sub- M Ch events. In particular, it is thought that the higher-density ejecta of M Ch WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni II ] lines in late-time spectra (≳150 d past explosion). Aims. We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from M Ch and sub- M Ch progenitors. We explore the potential for lines of [Ni II ] in the optical an near-infrared (at 7378 Å and 1.94 μm) in late-time spectra to serve as a diagnostic of the exploding WD mass. Methods. We reviewed stable Ni yields across a large variety of published SN Ia models. Using 1D M Ch delayed-detonation and sub- M Ch detonation models, we studied the synthesis of stable Ni isotopes (in particular, 58 Ni) and investigated the formation of [Ni II ] lines using non-local thermodynamic equilibrium radiative-transfer simulations with the CMFGEN code. Results. We confirm that stable Ni production is generally more efficient in M Ch explosions at solar metallicity (typically 0.02–0.08 M ⊙ for the 58 Ni isotope), but we note that the 58 Ni yield in sub- M Ch events systematically exceeds 0.01 M ⊙ for WDs that are more massive than one solar mass. We find that the radiative proton-capture reaction 57 Co( p , γ ) 58 Ni is the dominant production mode for 58 Ni in both M Ch and sub- M Ch models, while the α -capture reaction on 54 Fe has a negligible impact on the final 58 Ni yield. More importantly, we demonstrate that the lack of [Ni II ] lines in late-time spectra of sub- M Ch events is not always due to an under-abundance of stable Ni; rather, it results from the higher ionization of Ni in the inner ejecta. Conversely, the strong [Ni II ] lines predicted in our 1D M Ch models are completely suppressed when 56 Ni is sufficiently mixed with the innermost layers, which are rich in stable iron-group elements. Conclusions. [Ni II ] lines in late-time SN Ia spectra have a complex dependency on the abundance of stable Ni, which limits their use in distinguishing among M Ch and sub- M Ch progenitors. However, we argue that a low-luminosity SN Ia displaying strong [Ni II ] lines would most likely result from a Chandrasekhar-mass progenitor.more » « less