skip to main content


Search for: All records

Creators/Authors contains: "Escala, Ivanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The dwarf galaxy Triangulum (M33) presents an interesting testbed for studying stellar halo formation: it is sufficiently massive so as to have likely accreted smaller satellites, but also lies within the regime where feedback and other “in situ” formation mechanisms are expected to play a role. In this work, we analyze the line-of-sight kinematics of stars across M33 from the TREX survey, with a view to understanding the origin of its halo. We split our sample into two broad populations of varying age, comprising 2032 “old” red giant branch stars and 671 “intermediate-age” asymptotic giant branch and carbon stars. We find decisive evidence for two distinct kinematic components in both the old and intermediate-age populations: a low-dispersion (∼22 km s−1) disk-like component corotating with M33's Higas and a significantly higher-dispersion component (∼50–60 km s−1) that does not rotate in the same plane as the gas and is thus interpreted as M33's stellar halo. While kinematically similar, the fraction of stars associated with the halo component differs significantly between the two populations: this is consistently ∼10% for the intermediate-age population, but decreases from ∼34% to ∼10% as a function of radius for the old population. We additionally find evidence that the intermediate-age halo population is systematically offset from the systemic velocity of M33 by ∼25 km s−1, with a preferred central LOS velocity of ∼ − 155 km s−1. This is the first detection and characterization of an intermediate-age halo in M33, and suggests in situ formation mechanisms, as well as potentially tidal interactions, have helped shaped it.

     
    more » « less
  2. Abstract

    The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy,β, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo.

     
    more » « less
  3. Abstract

    We present spectroscopic chemical abundances of red giant branch stars in Andromeda (M31), using medium-resolution (R∼ 6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio spectra of stars to obtain a high enough signal to measure average [Fe/H] and [α/Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [α/Fe] for M31 halo stars, covering a range of 9–180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo (Rproj> 50 kpc) M31 stars with spectroscopic [Fe/H] and [α/Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of −0.0084 ± 0.0008 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [α/Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0027 ± 0.0005) in [α/Fe] as a function of projected radius. We also explore the distribution in [Fe/H]–[α/Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions add to existing evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy.

     
    more » « less
  4. ABSTRACT

    We examine the azimuthal variations in gas-phase metallicity profiles in simulated Milky Way-mass disc galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulation suite, which includes a sub-grid turbulent metal mixing model. We produce spatially resolved maps of the discs at z ≈ 0 with pixel sizes ranging from 250 to 750 pc, analogous to modern integral field unit galaxy surveys, mapping the gas-phase metallicities in both the cold and dense gas and the ionized gas correlated with H ii regions. We report that the spiral arms alternate in a pattern of metal rich and metal poor relative to the median metallicity of the order of ≲0.1 dex, appearing generally in this sample of flocculent spirals. The pattern persists even in a simulation with different strengths of metal mixing, indicating that the pattern emerges from physics above the sub-grid scale. Local enrichment does not appear to be the dominant source of the azimuthal metallicity variations at z ≈ 0: there is no correlation with local star formation on these spatial scales. Rather, the arms are moving radially inwards and outwards relative to each other, carrying their local metallicity gradients with them radially before mixing into the larger-scale interstellar medium. We propose that the arms act as freeways channeling relatively metal poor gas radially inwards, and relatively enriched gas radially outwards.

     
    more » « less
  5. Abstract

    Stellar kinematics and metallicity are key to exploring formation scenarios for galactic disks and halos. In this work, we characterized the relationship between kinematics and photometric metallicity along the line of sight to M31's disk. We combined optical Hubble Space Telescope/Advanced Camera for Surveys photometry, from the Panchromatic Hubble Andromeda Treasury survey, with Keck/DEIMOS spectra, from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. The resulting sample of 3512 individual red giant branch stars spans 4–19 projected kpc, making it a useful probe of both the disk and inner halo. We separated these stars into disk and halo populations, by modeling the line-of-sight velocity distributions as a function of position across the disk region, where ∼73% stars have a high likelihood of belonging to the disk and ∼14% to the halo. Although stellar halos are typically thought to be metal-poor, the kinematically identified halo contains a significant population of stars (∼29%) with disk-like metallicity ([Fe/H]phot∼ −0.10). This metal-rich halo population lags the gaseous disk to a similar extent as the rest of the halo, indicating that it does not correspond to a canonical thick disk. Its properties are inconsistent with those of tidal debris originating from the Giant Stellar Stream merger event. Moreover, the halo is chemically distinct from the phase-mixed component previously identified along the minor axis (i.e., away from the disk), implying contributions from different formation channels. These metal-rich halo stars provide direct chemodynamical evidence in favor of the previously suggested “kicked-up” disk population in M31's inner stellar halo.

     
    more » « less
  6. Abstract

    We obtained Keck/DEIMOS spectra of 556 individual red giant branch stars in four spectroscopic fields spanning 13−31 projected kpc along the northeast (NE) shelf of M31. We present the first detection of a complete wedge pattern in the space of projected M31-centric radial distance versus line-of-sight velocity for this feature, which includes the returning stream component of the shelf. This wedge pattern agrees with expectations of a tidal shell formed in a radial merger and provides strong evidence in favor of predictions of Giant Stellar Stream (GSS) formation models in which the NE shelf originates from the second orbital wrap of the tidal debris. The observed concentric wedge patterns of the NE, west (W), and southeast (SE) shelves corroborate this interpretation independently of the models. We do not detect a kinematical signature in the NE shelf region corresponding to an intact progenitor core, favoring GSS formation models in which the progenitor is completely disrupted. The shelf’s photometric metallicity ([Fe/H]phot) distribution implies that it is dominated by tidal material, as opposed to the phase-mixed stellar halo or the disk. The metallicity distribution ([Fe/H]phot= −0.42 ± 0.01) also matches the GSS, and consequently the W and SE shelves, further supporting a direct physical association between the tidal features.

     
    more » « less
  7. Abstract

    In the era of large-scale spectroscopic surveys in the Local Group, we can explore using chemical abundances of halo stars to study the star formation and chemical enrichment histories of the dwarf galaxy progenitors of the Milky Way (MW) and M31 stellar halos. In this paper, we investigate using the chemical abundance ratio distributions (CARDs) of seven stellar halos from the Latte suite of FIRE-2 simulations. We attempt to infer galaxies’ assembly histories by modeling the CARDs of the stellar halos of the Latte galaxies as a linear combination oftemplateCARDs from disrupted dwarfs, with different stellar massesMand quenching timest100. We present a method for constructing these templates using present-day dwarf galaxies. For four of the seven Latte halos studied in this work, we recover the mass spectrum of accreted dwarfs to a precision of <10%. For the fraction of mass accreted as a function oft100, we find the residuals of 20%–30% for five of the seven simulations. We discuss the failure modes of this method, which arise from the diversity of star formation and chemical enrichment histories that dwarf galaxies can take. These failure cases can be robustly identified by the high model residuals. Although the CARDs modeling method does not successfully infer the assembly histories in these cases, the CARDs of these disrupted dwarfs contain signatures of their unusual formation histories. Our results are promising for using CARDs to learn more about the histories of the progenitors of the MW and M31 stellar halos.

     
    more » « less
  8. Abstract

    We analyze existing measurements of [Fe/H] and [α/Fe] for individual red giant branch (RGB) stars in the Giant Stellar Stream (GSS) of M31 to determine whether spatial abundance gradients are present. These measurements were obtained from low- (R∼ 3000) and moderate- (R∼ 6000) resolution Keck/DEIMOS spectroscopy using spectral synthesis techniques as part of the Elemental Abundances in M31 survey. From a sample of 62 RGB stars spanning the GSS at 17, 22, and 33 projected kpc, we measure a [Fe/H] gradient of −0.018 ± 0.003 dex kpc−1and negligible [α/Fe] gradient with M31-centric radius. We investigate GSS abundance patterns in the outer halo using additional [Fe/H] and [α/Fe] measurements for six RGB stars located along the stream at 45 and 58 projected kpc. These abundances provide tentative evidence that the trends in [Fe/H] and [α/Fe] beyond 40 kpc in the GSS are consistent with those within 33 kpc. We also compare the GSS abundances to 65 RGB stars located along the possibly related Southeast (SE) shelf substructure at 12 and 18 projected kpc. The abundances of the GSS and SE shelf are consistent, supporting a common origin hypothesis, although this interpretation may be complicated by the presence of [Fe/H] gradients in the GSS. We discuss the abundance patterns in the context of photometric studies from the literature and explore implications for the properties of the GSS progenitor, suggesting that the high 〈[α/Fe]〉 of the GSS (+0.40 ± 0.05 dex) favors a major merger scenario for its formation.

     
    more » « less
  9. ABSTRACT

    Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, discy galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy evolution, how and where gas joins galaxies is poorly constrained observationally and rarely explored in fully cosmological simulations. To investigate gas accretion in the vicinity of galaxies at low redshift, we analyse the FIRE-2 cosmological zoom-in simulations for 4 Milky Way mass galaxies (Mhalo ∼ 1012M⊙), focusing on simulations with cosmic ray physics. We find that at z ∼ 0, gas approaches the disc with angular momentum similar to the gaseous disc edge and low radial velocities, piling-up near the edge and settling into full rotational support. Accreting gas moves predominately parallel to the disc and joins largely in the outskirts. Immediately prior to joining the disc, trajectories briefly become more vertical on average. Within the disc, gas motion is complex, being dominated by spiral arm induced oscillations and feedback. However, time and azimuthal averages show slow net radial infall with transport speeds of 1–3 km s−1 and net mass fluxes through the disc of ∼M⊙ yr−1, comparable to the galaxies’ star formation rates and decreasing towards galactic centre as gas is sunk into star formation. These rates are slightly higher in simulations without cosmic rays (1–7 km s−1, ∼4–5 M⊙ yr−1). We find overall consistency of our results with observational constraints and discuss prospects of future observations of gas flows in and around galaxies.

     
    more » « less