skip to main content


Search for: All records

Creators/Authors contains: "Fazio, G. G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report a timing analysis of near-infrared (NIR), X-ray, and submillimeter data during a 3 day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 μ m with the Spitzer Space Telescope, 2–8 keV with the Chandra X-ray Observatory, 3–70 keV with NuSTAR, 340 GHz with ALMA, and 2.2 μ m with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submillimeter and the infrared at 99% confidence. A moderately bright NIR flare ( F K ∼ 15 mJy) was captured on July 18 simultaneous with an X-ray flare ( F 2−10 keV ∼ 0.1 counts s −1 ) that most likely preceded bright submillimeter flux ( F 340 GHz ∼ 5.5 Jy) by about + 34 − 33 + 14 minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submillimeter emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submillimeter once the synchrotron self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a nonthermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submillimeter flare with the NIR/X-ray emission. 
    more » « less
  2. We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A ⋆ . We obtained light curves in the M , K , and H bands in the mid- and near-infrared and in the 2 − 8 keV and 2 − 70 keV bands in the X-ray. The observed spectral slope in the near-infrared band is νL ν  ∝  ν 0.5 ± 0.2 ; the spectral slope observed in the X-ray band is νL ν  ∝  ν −0.7 ± 0.5 . Using a fast numerical implementation of a synchrotron sphere with a constant radius, magnetic field, and electron density (i.e., a one-zone model), we tested various synchrotron and synchrotron self-Compton scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is synchrotron self-Compton. Two realizations of the one-zone model can explain the observed flare and its temporal correlation: one-zone model in which the near-infrared and X-ray luminosity are produced by synchrotron self-Compton and a model in which the luminosity stems from a cooled synchrotron spectrum. Both models can describe the mean spectral energy distribution (SED) and temporal evolution similarly well. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor γ max , which differ by roughly two orders of magnitude. The synchrotron self-Compton model suggests that electrons are accelerated to γ max  ∼ 500, while cooled synchrotron model requires acceleration up to γ max  ∼ 5 × 10 4 . The synchrotron self-Compton scenario requires electron densities of 10 10 cm −3 that are much larger than typical ambient densities in the accretion flow. Furthermore, it requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event. In contrast, assuming a source size of 1  R S , the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor γ max , implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare. 
    more » « less