skip to main content


Search for: All records

Creators/Authors contains: "Fuller, G A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The formation mechanism of the most massive stars is far from completely understood. It is still unclear if the formation is core-fed or clump-fed, i.e. if the process is an extension of what happens in low-mass stars, or if the process is more dynamical such as a continuous, multiscale accretion from the gas at parsec (or even larger) scales. In this context, we introduce the SQUALO project, an ALMA 1.3 and 3 mm survey designed to investigate the properties of 13 massive clumps selected at various evolutionary stages, with the common feature that they all show evidence for accretion at the clump scale. In this work, we present the results obtained from the 1.3 mm continuum data. Our observations identify 55 objects with masses in the range 0.4 ≤ M ≤ 309 M⊙, with evidence that the youngest clumps already present some degree of fragmentation. The data show that physical properties such as mass and surface density of the fragments and their parent clumps are tightly correlated. The minimum distance between fragments decreases with evolution, suggesting a dynamical scenario in which massive clumps first fragment under the influence of non-thermal motions driven by the competition between turbulence and gravity. With time gravitational collapse takes over and the fragments organize themselves into more thermally supported objects while continuing to accrete from their parent clump. Finally, one source does not fragment, suggesting that the support of other mechanisms (such as magnetic fields) is crucial only in specific star-forming regions.

     
    more » « less
  2. ABSTRACT The latest generation of Galactic Plane surveys is enhancing our ability to study the effects of galactic environment upon the process of star formation. We present the first data from CO Heterodyne Inner Milky Way Plane Survey 2 (CHIMPS2). CHIMPS2 is a survey that will observe the Inner Galaxy, the Central Molecular Zone (CMZ), and a section of the Outer Galaxy in 12CO, 13CO, and C18O $(J = 3\rightarrow 2)$ emission with the Heterodyne Array Receiver Program on the James Clerk Maxwell Telescope (JCMT). The first CHIMPS2 data presented here are a first look towards the CMZ in 12CO J = 3 → 2 and cover ${-}3^{\circ }\, \le \, \ell \, \le \, 5^{\circ }$ and $\mid {b} \mid \, \le \, 0{_{.}^{\circ}} 5$ with angular resolution of 15 arcsec, velocity resolution of 1 km s−1, and rms $\Delta \, T_A ^\ast =$ 0.58 K at these resolutions. Such high-resolution observations of the CMZ will be a valuable data set for future studies, whilst complementing the existing Galactic Plane surveys, such as SEDIGISM, the ${Herschel}$ infrared Galactic Plane Survey, and ATLASGAL. In this paper, we discuss the survey plan, the current observations and data, as well as presenting position–position maps of the region. The position–velocity maps detect foreground spiral arms in both absorption and emission. 
    more » « less