skip to main content


Search for: All records

Creators/Authors contains: "Ginsburg, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Molecular outflows are believed to be a key ingredient in the process of star formation. The molecular outflow associated with DR21 Main in Cygnus-X is one of the most extreme molecular outflows in the Milky Way in terms of mass and size. The outflow is suggested to belong to a rare class of explosive outflows formed by the disintegration of protostellar systems.

    Aims.We aim to explore the morphology, kinematics, and energetics of the DR21 Main outflow, and to compare those properties to confirmed explosive outflows in order to unravel the underlying driving mechanism behind DR21.

    Methods.We studied line and continuum emission at a wavelength of 3.6 mm with IRAM 30 m and NOEMA telescopes as part of the Cygnus Allscale Survey of Chemistry and Dynamical Environments (CASCADE) program. The spectra include (J= 1−0) transitions of HCO+, HCN, HNC, N2H+, H2CO, and CCH, which trace different temperature and density regimes of the outflowing gas at high velocity resolution (~0.8 km s−1). The map encompasses the entire DR21 Main outflow and covers all spatial scales down to a resolution of 3″ (~0.02 pc).

    Results.Integrated intensity maps of the HCO+emission reveal a strongly collimated bipolar outflow with significant overlap of the blueshifted and redshifted emission. The opening angles of both outflow lobes decrease with velocity, from ~80 to 20° for the velocity range from 5 to 45 km s−1relative to the source velocity. No evidence is found for the presence of elongated, “filament-like” structures expected in explosive outflows. N2H+emission near the western outflow lobe reveals the presence of a dense molecular structure, which appears to be interacting with the DR21 Main outflow.

    Conclusions.The overall morphology as well as the detailed kinematics of the DR21 Main outflow are more consistent with a typical bipolar outflow than with an explosive counterpart.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. ABSTRACT

    Studies of dense core morphologies and their orientations with respect to gas flows and the local magnetic field have been limited to only a small sample of cores with spectroscopic data. Leveraging the Green Bank Ammonia Survey alongside existing sub-millimeter continuum observations and Planck dust polarization, we produce a cross-matched catalogue of 399 dense cores with estimates of core morphology, size, mass, specific angular momentum, and magnetic field orientation. Of the 399 cores, 329 exhibit 2D vLSR maps that are well fit with a linear gradient, consistent with rotation projected on the sky. We find a best-fit specific angular momentum and core size relationship of J/M ∝ R1.82 ± 0.10, suggesting that core velocity gradients originate from a combination of solid body rotation and turbulent motions. Most cores have no preferred orientation between the axis of core elongation, velocity gradient direction, and the ambient magnetic field orientation, favouring a triaxial and weakly magnetized origin. We find, however, strong evidence for a preferred anti-alignment between the core elongation axis and magnetic field for protostellar cores, revealing a change in orientation from starless and prestellar populations that may result from gravitational contraction in a magnetically-regulated (but not dominant) environment. We also find marginal evidence for anti-alignment between the core velocity gradient and magnetic field orientation in the L1228 and L1251 regions of Cepheus, suggesting a preferred orientation with respect to magnetic fields may be more prevalent in regions with locally ordered fields.

     
    more » « less
  3. Abstract

    We present a catalog of 315 protostellar outflow candidates detected in SiOJ= 5 − 4 in the ALMA-IMF Large Program, observed with ∼2000 au spatial resolution, 0.339 km s−1velocity resolution, and 2–12 mJy beam−1(0.18–0.8 K) sensitivity. We find median outflow masses, momenta, and kinetic energies of ∼0.3M, 4Mkm s−1, and 1045erg, respectively. Median outflow lifetimes are 6000 yr, yielding median mass, momentum, and energy rates ofṀ= 10−4.4Myr−1,Ṗ= 10−3.2Mkm s−1yr−1, andĖ= 1L. We analyze these outflow properties in the aggregate in each field. We find correlations between field-aggregated SiO outflow properties and total mass in cores (∼3σ–5σ), and no correlations above 3σwith clump mass, clump luminosity, or clump luminosity-to-mass ratio. We perform a linear regression analysis and find that the correlation between field-aggregated outflow mass and total clump mass—which has been previously described in the literature—may actually be mediated by the relationship between outflow mass and total mass in cores. We also find that the most massive SiO outflow in each field is typically responsible for only 15%–30% of the total outflow mass (60% upper limit). Our data agree well with the established mechanical force−bolometric luminosity relationship in the literature, and our data extend this relationship up toL≥ 106LandṖ≥ 1Mkm s−1yr−1. Our lack of correlation with clumpL/Mis inconsistent with models of protocluster formation in which all protostars start forming at the same time.

     
    more » « less
  4. ALMA-IMF is an Atacama Large Millimeter/submillimeter Array (ALMA) Large Program designed to measure the core mass function (CMF) of 15 protoclusters chosen to span their early evolutionary stages. It further aims to understand their kinematics, chemistry, and the impact of gas inflow, accretion, and dynamics on the CMF. We present here the first release of the ALMA-IMF line data cubes (DR1), produced from the combination of two ALMA 12 m-array configurations. The data include 12 spectral windows, with eight at 1.3 mm and four at 3 mm. The broad spectral coverage of ALMA-IMF (∼6.7 GHz bandwidth coverage per field) hosts a wealth of simple atomic, molecular, ionised, and complex organic molecular lines. We describe the line cube calibration done by ALMA and the subsequent calibration and imaging we performed. We discuss our choice of calibration parameters and optimisation of the cleaning parameters, and we demonstrate the utility and necessity of additional processing compared to the ALMA archive pipeline. As a demonstration of the scientific potential of these data, we present a first analysis of the DCN (3–2) line. We find that DCN (3–2) traces a diversity of morphologies and complex velocity structures, which tend to be more filamentary and widespread in evolved regions and are more compact in the young and intermediate-stage protoclusters. Furthermore, we used the DCN (3–2) emission as a tracer of the gas associated with 595 continuum cores across the 15 protoclusters, providing the first estimates of the core systemic velocities and linewidths within the sample. We find that DCN (3–2) is detected towards a higher percentage of cores in evolved regions than the young and intermediate-stage protoclusters and is likely a more complete tracer of the core population in more evolved protoclusters. The full ALMA 12m-array cubes for the ALMA-IMF Large Program are provided with this DR1 release.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  5. Context. The origin of the stellar initial mass function (IMF) and its relation with the core mass function (CMF) are actively debated issues with important implications in astrophysics. Recent observations in the W43 molecular complex of top-heavy CMFs, with an excess of high-mass cores compared to the canonical mass distribution, raise questions about our understanding of the star formation processes and their evolution in space and time. Aims. We aim to compare populations of protostellar and prestellar cores in three regions imaged in the ALMA-IMF Large Program. Methods. We created an homogeneous core catalogue in W43, combining a new core extraction in W43-MM1 with the catalogue of W43-MM2&MM3 presented in a previous work. Our detailed search for protostellar outflows enabled us to identify between 23 and 30 protostellar cores out of 127 cores in W43-MM1 and between 42 and 51 protostellar cores out of 205 cores in W43-MM2&MM3. Cores with neither outflows nor hot core emission are classified as prestellar candidates. Results. We found a similar fraction of cores which are protostellar in the two regions, about 35%. This fraction strongly varies in mass, from f pro ≃ 15–20% at low mass, between 0.8 and 3 M ⊙ up to f pro ≃ 80% above 16 M ⊙ . Protostellar cores are found to be, on average, more massive and smaller in size than prestellar cores. Our analysis also revealed that the high-mass slope of the prestellar CMF in W43, α = -1.46 -0.19 +0.12 , is consistent with the Salpeter slope, and thus the top-heavy form measured for the global CMF, α = −0.96 ± 0.09, is due to the protostellar core population. Conclusions. Our results could be explained by ‘clump-fed’ models in which cores grow in mass, especially during the protostellar phase, through inflow from their environment. The difference between the slopes of the prestellar and protostellar CMFs moreover implies that high-mass cores grow more in mass than low-mass cores. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. Context. The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact H ii (UCHii ) regions were identified in SgrB2’s central hot cores, SgrB2(M) and SgrB2(N). Aims. Our aim is to characterize the properties of the H ii regions in the entire SgrB2 cloud. Comparing the H ii regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. Methods. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCH ii regions and their dense gas environment. Results. We identify 54 UCHii regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHii regions are newly discovered. The UCHii regions have radii between 0.006 pc and 0.04 pc, and have emission measure between 10 6 pc cm 6 and 10 9 pc cm 6 . The UCHii regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of ~10 6 –10 9 cm 3 around the UCH ii regions. The pressure of the UCH ii regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHii regions is determined to be ~10 4 –10 5 yr. The percentage of the dust cores that are associated with H ii regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. Conclusions. The electron densities of the UCHii regions we identified are in agreement with that of typical UCHii regions, while the radii are smaller than those of the typical UCHii regions. The dust cores in SgrB2(M) are more evolved than in SgrB2(N). The dust cores in SgrB2(DS) are younger than in SgrB2(M) or SgrB2(N). 
    more » « less
  7. Context. Among the most central open questions regarding the initial mass function (IMF) of stars is the impact of environment on the shape of the core mass function (CMF) and thus potentially on the IMF. Aims. The ALMA-IMF Large Program aims to investigate the variations in the core distributions (CMF and mass segregation) with cloud characteristics, such as the density and kinematic of the gas, as diagnostic observables of the formation process and evolution of clouds. The present study focuses on the W43-MM2&MM3 mini-starburst, whose CMF has recently been found to be top-heavy with respect to the Salpeter slope of the canonical IMF. Methods. W43-MM2&MM3 is a useful test case for environmental studies because it harbors a rich cluster that contains a statistically significant number of cores (specifically, 205 cores), which was previously characterized in Paper III. We applied a multi-scale decomposition technique to the ALMA 1.3 mm and 3 mm continuum images of W43-MM2&MM3 to define six subregions, each 0.5–1 pc in size. For each subregion we characterized the probability distribution function of the high column density gas, η -PDF, using the 1.3 mm images. Using the core catalog, we investigate correlations between the CMF and cloud and core properties, such as the η -PDF and the core mass segregation. Results. We classify the W43-MM2&MM3 subregions into different stages of evolution, from quiescent to burst to post-burst, based on the surface number density of cores, number of outflows, and ultra-compact HII presence. The high-mass end (>1 M ⊙ ) of the subregion CMFs varies from close to the Salpeter slope (quiescent) to top-heavy (burst and post-burst). Moreover, the second tail of the η -PDF varies from steep (quiescent) to flat (burst and post-burst), as observed for high-mass star-forming clouds. We find that subregions with flat second η -PDF tails display top-heavy CMFs. Conclusions. In dynamical environments such as W43-MM2&MM3, the high-mass end of the CMF appears to be rooted in the cloud structure, which is at high column density and surrounds cores. This connection stems from the fact that cores and their immediate surroundings are both determined and shaped by the cloud formation process, the current evolutionary state of the cloud, and, more broadly, the star formation history. The CMF may evolve from Salpeter to top-heavy throughout the star formation process from the quiescent to the burst phase. This scenario raises the question of if the CMF might revert again to Salpeter as the cloud approaches the end of its star formation stage, a hypothesis that remains to be tested. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. ABSTRACT

    We use the Very Long Baseline Array to conduct high precision astrometry of a sample of 33 compact, flat spectrum, variable radio sources in the direction of the Galactic plane (Becker et al. 2010). Although Becker et al. (2010) ruled out a few potential scenarios for the origin of the radio emission, the study could not rule out that these sources were black hole X-ray binaries (BHXBs). Most known BHXBs are first detected by X-ray or optical emission when they go into an outburst, leaving the larger quiescent BHXB population undiscovered. In this paper, we attempt to identify any Galactic sources amongst the Becker et al. (2010) sample by measuring their proper motions as a first step to finding quiescent BHXB candidates. Amongst the 33 targets, we could measure the proper motion of six sources. We find that G32.7193-0.6477 is a Galactic source and are able to constrain the parallax of this source with a 3σ significance. We found three strong Galactic candidates, G32.5898-0.4468, G29.1075-0.1546, and G31.1494-0.1727, based purely on their proper motions, and suggest that G29.1075-0.1546 is also likely Galactic. We detected two resolved targets for multiple epochs (G30.1038+0.3984 and G29.7161-0.3178). We find six targets are only detected in one epoch and have an extended structure. We cross-match our VLBA detections with the currently available optical, infrared, and X-ray surveys, and did not find any potential matches. We did not detect 19 targets in any VLBA epochs and suggest that this could be due to limited uv-coverage, drastic radio variability, or faint, extended nature of the sources.

     
    more » « less
  9. Abstract

    We report on the discovery of linear filaments observed in the CO(1-0) emission for a ∼2′ field of view toward the Sgr E star-forming region, centered at (l,b) = (358.°720, 0.°011). The Sgr E region is thought to be at the turbulent intersection of the “far dust lane” associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations, which are generally thought to inhibit star formation, yet Sgr E contains a large number of Hiiregions. We present12CO(1-0),13CO(1-0), and C18O(1-0) spectral line observations from the Atacama Large Millimeter/submillimeter Array and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHMs) of ∼0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of ∼2°. The filaments are elongated, with lower-limit aspect ratios of ∼5:1. For both filaments, we detect two distinct velocity components that are separated by about 15 km s−1. In the C18O spectral line data, with ∼0.09 pc spatial resolution, we find that these velocity components have relatively narrow (∼1–2 km s−1) FWHM line widths when compared to other sources toward the Galactic center. The properties of these filaments suggest that the gas in the Sgr E complex is being “stretched,” as it is rapidly accelerated by the gravitational field of the Galactic bar while falling toward the CMZ, a result that could provide insights into the extreme environment surrounding this region and the large-scale processes that fuel this environment.

     
    more » « less