skip to main content


Search for: All records

Creators/Authors contains: "Greenberg, Matthew W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to 10 −4 s −1 ), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) 2 ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( t ind ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb 2 (μ 2 -S) 2 (Pb(O 2 CR) 2 ) 2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. 
    more » « less
  2. Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS , 1950, 72 (11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys. , 1951, 19 , 482). Using a combination of in situ X-ray scattering, optical absorption, and 13 C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/ r ) fits the data with a single growth rate constant ( k G ) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results. 
    more » « less
  3. null (Ed.)