skip to main content


Search for: All records

Creators/Authors contains: "Guo, Y J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The PSR J2222−0137 binary system has a set of features that make it a unique laboratory for tests of gravity theories. Aims. To fully exploit the system’s potential for these tests, we aim to improve the measurements of its physical parameters, spin and orbital orientation, and post-Keplerian parameters, which quantify the observed relativistic effects. Methods. We describe an improved analysis of archival very long baseline interferometry (VLBI) data, which uses a coordinate convention in full agreement with that used in timing. We have also obtained much improved polarimetry of the pulsar with the Five hundred meter Aperture Spherical Telescope (FAST). We provide an improved analysis of significantly extended timing datasets taken with the Effelsberg, Nançay, and Lovell radio telescopes; this also includes previous timing data from the Green Bank Telescope. Results. From the VLBI analysis, we have obtained a new estimate of the position angle of the ascending node, Ω = 189 −18 +19 deg (all uncertainties are 68% confidence limits), and a new reference position for the pulsar with an improved and more conservative uncertainty estimate. The FAST polarimetric results, and in particular the detection of an interpulse, yield much improved estimates for the spin geometry of the pulsar, in particular an inclination of the spin axis of the pulsar of ∼84 deg. From the timing, we obtain a new ∼1% test of general relativity (GR) from the agreement of the Shapiro delay parameters and the rate of advance of periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved masses: 1.831(10)  M ⊙ for the pulsar and 1.319(4)  M ⊙ for the white dwarf companion; the total mass, 3.150(14)  M ⊙ , confirms this as the most massive double degenerate binary known in the Galaxy. This analysis also yields the orbital orientation; in particular, the orbital inclination is 85.27(4) deg – indicating a close alignment between the spin of the pulsar and the orbital angular momentum – and Ω = 187.7(5.7) deg, which matches our new VLBI estimate. Finally, the timing also yields a precise measurement of the variation in the orbital period, Ṗ b = 0.251(8) × 10 −12 ss −1 ; this is consistent with the expected variation in the Doppler factor plus the orbital decay caused by the emission of gravitational waves predicted by GR. This agreement introduces stringent constraints on the emission of dipolar gravitational waves. 
    more » « less
  2. ABSTRACT

    The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.

     
    more » « less
  3. ABSTRACT

    We searched for an isotropic stochastic gravitational wave background in the second data release of the International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns in North America, Europe, and Australia. In our reference search for a power-law strain spectrum of the form $h_c = A(f/1\, \mathrm{yr}^{-1})^{\alpha }$, we found strong evidence for a spectrally similar low-frequency stochastic process of amplitude $A = 3.8^{+6.3}_{-2.5}\times 10^{-15}$ and spectral index α = −0.5 ± 0.5, where the uncertainties represent 95 per cent credible regions, using information from the auto- and cross-correlation terms between the pulsars in the array. For a spectral index of α = −2/3, as expected from a population of inspiralling supermassive black hole binaries, the recovered amplitude is $A = 2.8^{+1.2}_{-0.8}\times 10^{-15}$. None the less, no significant evidence of the Hellings–Downs correlations that would indicate a gravitational-wave origin was found. We also analysed the constituent data from the individual pulsar timing arrays in a consistent way, and clearly demonstrate that the combined international data set is more sensitive. Furthermore, we demonstrate that this combined data set produces comparable constraints to recent single-array data sets which have more data than the constituent parts of the combination. Future international data releases will deliver increased sensitivity to gravitational wave radiation, and significantly increase the detection probability.

     
    more » « less