skip to main content


Search for: All records

Creators/Authors contains: "Hamanowicz, Aleksandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Understanding how galaxies interact with the circumgalactic medium (CGM) requires determining how galaxies’ morphological and stellar properties correlate with their CGM properties. We report an analysis of 66 well-imaged galaxies detected in Hubble Space Telescope and Very Large Telescope MUSE observations and determined to be within ±500 km s−1 of the redshifts of strong intervening quasar absorbers at 0.2 ≲ z ≲ 1.4 with H i column densities $N_{\rm H I} \gt 10^{18}\, \rm cm^{-2}$. We present the geometrical properties (Sérsic indices, effective radii, axis ratios, and position angles) of these galaxies determined using galfit. Using these properties along with star formation rates (SFRs, estimated using the H α or [O ii] luminosity) and stellar masses (M* estimated from spectral energy distribution fits), we examine correlations among various stellar and CGM properties. Our main findings are as follows: (1) SFR correlates well with M*, and most absorption-selected galaxies are consistent with the star formation main sequence of the global population. (2) More massive absorber counterparts are more centrally concentrated and are larger in size. (3) Galaxy sizes and normalized impact parameters correlate negatively with NHI, consistent with higher NHI absorption arising in smaller galaxies, and closer to galaxy centres. (4) Absorption and emission metallicities correlate with M* and specific SFR, implying metal-poor absorbers arise in galaxies with low past star formation and faster current gas consumption rates. (5) SFR surface densities of absorption-selected galaxies are higher than predicted by the Kennicutt–Schmidt relation for local galaxies, suggesting a higher star formation efficiency in the absorption-selected galaxies.

     
    more » « less
  2. ABSTRACT

    The flow of gas into and out of galaxies leaves traces in the circumgalactic medium which can then be studied using absorption lines towards background quasars. We analyse 27 ${{\log [N({\textrm {H}}\, {\small {I}})/\rm {cm}^{-2}]}} > 18.0$ H i absorbers at z = 0.2 to 1.4 from the MUSE-ALMA Haloes survey with at least one galaxy counterpart within a line of sight velocity of ±500 km s−1. We perform 3D kinematic forward modelling of these associated galaxies to examine the flow of dense, neutral gas in the circumgalactic medium. From the VLT/MUSE, HST broad-band imaging, and VLT/UVES and Keck/HIRES high-resolution UV quasar spectroscopy observations, we compare the impact parameters, star-formation rates, and stellar masses of the associated galaxies with the absorber properties. We find marginal evidence for a bimodal distribution in azimuthal angles for strong H i absorbers, similar to previous studies of the Mg ii and O vi absorption lines. There is no clear metallicity dependence on azimuthal angle, and we suggest a larger sample of absorbers is required to fully test the relationship predicted by cosmological hydrodynamical simulations. A case-by-case study of the absorbers reveals that ten per cent of absorbers are consistent with gas accretion, up to 30 per cent trace outflows, and the remainder trace gas in the galaxy disc, the intragroup medium, and low-mass galaxies below the MUSE detection limit. Our results highlight that the baryon cycle directly affects the dense neutral gas required for star-formation and plays a critical role in galaxy evolution.

     
    more » « less
  3. ABSTRACT

    We present a pilot, untargeted extragalactic carbon monoxide (CO) emission-line survey using ALMACAL, a project utilizing ALMA calibration data for scientific purposes. In 33 deep (Texp > 40 min) ALMACAL fields, we report six CO emission-line detections above S/N > 4, one-third confirmed by MUSE observations. With this pilot survey, we probe a cosmologically significant volume of ∼105 cMpc3, widely distributed over many pointings in the southern sky, making the survey largely insusceptible to the effects of cosmic variance. We derive the redshift probability of the CO detections using probability functions from the Shark semi-analytical model of galaxy formation. By assuming typical CO excitations for the detections, we put constraints on the cosmic molecular gas mass density evolution over the redshift range 0 < z < 1.5. The results of our pilot survey are consistent with the findings of other untargeted emission-line surveys and the theoretical model predictions and currently cannot rule out a non-evolving molecular gas mass density. Our study demonstrates the potential of using ALMA calibrator fields as a multi-sightline untargeted CO emission-line survey. Applying this approach to the full ALMACAL database will provide an accurate, free of cosmic variance, measurement of the molecular luminosity function as a function of redshift.

     
    more » « less
  4. ABSTRACT

    Wide, deep, blind continuum surveys at submillimetre/millimetre (submm/mm) wavelengths are required to provide a full inventory of the dusty, distant Universe. However, conducting such surveys to the necessary depth, with sub-arcsec angular resolution, is prohibitively time-consuming, even for the most advanced submm/mm telescopes. Here, we report the most recent results from the ALMACAL project, which exploits the ‘free’ calibration data from the Atacama Large Millimetre/submillimetre Array (ALMA) to map the lines of sight towards and beyond the ALMA calibrators. ALMACAL has now covered 1001 calibrators, with a total sky coverage around 0.3 deg2, distributed across the sky accessible from the Atacama desert, and has accumulated more than 1000 h of integration. The depth reached by combining multiple visits to each field makes ALMACAL capable of searching for faint, dusty, star-forming galaxies (DSFGs), with detections at multiple frequencies to constrain the emission mechanism. Based on the most up-to-date ALMACAL data base, we report the detection of 186 DSFGs with flux densities down to S870 µm ∼ 0.2 mJy, comparable with existing ALMA large surveys but less susceptible to cosmic variance. We report the number counts at five wavelengths between 870 μm and 3 mm, in ALMA bands 3, 4, 5, 6, and 7, providing a benchmark for models of galaxy formation and evolution. By integrating the observed number counts and the best-fitting functions, we also present the resolved fraction of the cosmic infrared background (CIB) and the CIB spectral shape. Combining existing surveys, ALMA has currently resolved about half of the CIB in the submm/mm regime.

     
    more » « less
  5. Abstract The metallicity and gas density dependence of interstellar depletions, the dust-to-gas (D/G), and dust-to-metal (D/M) ratios have important implications for how accurately we can trace the chemical enrichment of the universe, either by using FIR dust emission as a tracer of the ISM or by using spectroscopy of damped Ly α systems to measure chemical abundances over a wide range of redshifts. We collect and compare large samples of depletion measurements in the Milky Way (MW), Large Magellanic Cloud (LMC) ( Z = 0.5 Z ⊙ ), and Small Magellanic Cloud (SMC) ( Z = 0.2 Z ⊙ ). The relations between the depletions of different elements do not strongly vary between the three galaxies, implying that abundance ratios should trace depletions accurately down to 20% solar metallicity. From the depletions, we derive D/G and D/M. The D/G increases with density, consistent with the more efficient accretion of gas-phase metals onto dust grains in the denser ISM. For log N (H) > 21 cm −2 , the depletion of metallicity tracers (S, Zn) exceeds −0.5 dex, even at 20% solar metallicity. The gas fraction of metals increases from the MW to the LMC (factor 3) and SMC (factor 6), compensating for the reduction in total heavy element abundances and resulting in those three galaxies having the same neutral gas-phase metallicities. The D/G derived from depletions are respective factors of 2 (LMC) and 5 (SMC) higher than the D/G derived from FIR, 21 cm, and CO emission, likely due to the combined uncertainties on the dust FIR opacity and on the depletion of carbon and oxygen. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present results of MUSE-ALMA haloes, an ongoing study of the circumgalactic medium (CGM) of galaxies (z ≤ 1.4). Using multiphase observations we probe the neutral, ionized, and molecular gas in a subsample containing six absorbers and nine associated galaxies in the redshift range z ∼ 0.3–0.75. Here, we give an in-depth analysis of the newly CO-detected galaxy Q2131−G1 (z = 0.42974), while providing stringent mass and depletion time limits for the non-detected galaxies. Q2131−G1 is associated with an absorber with column densities of log(NH i/cm−2) ∼ 19.5 and $\textrm {log}(N_{\textrm {H}_2}/\textrm {cm}^{-2}) \sim 16.5$, and has a star formation rate of SFR = 2.00 ± 0.20 M⊙yr−1, a dark matter fraction of fDM(r1/2) = 0.24–0.54, and a molecular gas mass of $M_\textrm {mol} = 3.52 ^{+3.95}_{-0.31} \times 10^9 \,\, \textrm {M}_{\odot }$ resulting in a depletion time of τdep < 4.15 Gyr. Kinematic modelling of both the CO (3–2) and [O iii] λ5008 emission lines of Q2131−G1 shows that the molecular and ionized gas phases are well aligned directionally and that the maximum rotation velocities closely match. These two gas phases within the disc are strongly coupled. The metallicity, kinematics, and orientation of the atomic and molecular gas traced by a two-component absorption feature are consistent with being part of the extended rotating disc with a well-separated additional component associated with infalling gas. Compared to emission-selected samples, we find that H i-selected galaxies have high molecular gas masses given their low star formation rate. We consequently derive high depletion times for these objects. 
    more » « less