We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Ly
- Award ID(s):
- 2007538
- NSF-PAR ID:
- 10290948
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 505
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4746 to 4761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract α absorbers (DLAs) atz ≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz = 2.4604 using NOEMA, associated with thez = 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of % and %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi –selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M ⊙. This indicates that the highest-metallicity DLAs atz ≈ 2 are associated with the most massive galaxies. The newly identifiedz ≈ 2.4604 Hi –selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (α CO/4.36) × (r 31/0.55)M ⊙. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σ upper limit of 2.3M ⊙yr−1on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts. -
null (Ed.)ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium.more » « less
-
ABSTRACT The flow of gas into and out of galaxies leaves traces in the circumgalactic medium which can then be studied using absorption lines towards background quasars. We analyse 27 ${{\log [N({\textrm {H}}\, {\small {I}})/\rm {cm}^{-2}]}} > 18.0$ H i absorbers at z = 0.2 to 1.4 from the MUSE-ALMA Haloes survey with at least one galaxy counterpart within a line of sight velocity of ±500 km s−1. We perform 3D kinematic forward modelling of these associated galaxies to examine the flow of dense, neutral gas in the circumgalactic medium. From the VLT/MUSE, HST broad-band imaging, and VLT/UVES and Keck/HIRES high-resolution UV quasar spectroscopy observations, we compare the impact parameters, star-formation rates, and stellar masses of the associated galaxies with the absorber properties. We find marginal evidence for a bimodal distribution in azimuthal angles for strong H i absorbers, similar to previous studies of the Mg ii and O vi absorption lines. There is no clear metallicity dependence on azimuthal angle, and we suggest a larger sample of absorbers is required to fully test the relationship predicted by cosmological hydrodynamical simulations. A case-by-case study of the absorbers reveals that ten per cent of absorbers are consistent with gas accretion, up to 30 per cent trace outflows, and the remainder trace gas in the galaxy disc, the intragroup medium, and low-mass galaxies below the MUSE detection limit. Our results highlight that the baryon cycle directly affects the dense neutral gas required for star-formation and plays a critical role in galaxy evolution.
-
ABSTRACT We study the gas distribution and kinematics of the inner kpc of six moderately luminous (43.43 ≤ log Lbol ≤ 44.83) nearby (0.004 ≤ z ≤ 0.014) Seyfert galaxies observed with the Near-infrared Integral Field Spectrograph (NIFS) in the J ($1.25\,\mu$m) and K ($2.2\,\mu$m) bands. We analyse the most intense emission lines detected on these spectral wavebands: [Fe ii] $1.2570\, \mu$m and Paβ, which trace the ionized gas in the partially and fully ionized regions, and $\mathrm{ H}_2 \ 2.1218\, \mu$m, which traces the hot (∼2000 K) molecular gas. The dominant kinematic component is rotation in the disc of the galaxies, except for the ionized gas in NGC 5899 that shows only weak signatures of a disc component. We find ionized gas outflow in four galaxies, while signatures of H2 outflows are seen in three galaxies. The ionized gas outflows display velocities of a few hundred km s−1, and their mass outflow rates are in the range 0.005–12.49 M⊙ yr−1. Their kinetic powers correspond to 0.005–0.7 per cent of the active galactic nuclei (AGN) bolometric luminosities. Besides rotation and outflows signatures in some cases, the H2 kinematics also reveals inflows in three galaxies. The inflow velocities are 50–80 km s−1 and the mass inflow rates are in the range 1–9 × 10−4 M⊙ yr−1 for hot molecular gas. These inflows might be only the hot skin of the total inflowing gas, which is expected to be dominated by colder gas. The mass inflow rates are lower than the current accretion rates to the AGN, and the ionized outflows are apparently disturbing the gas in the inner kpc.
-
Abstract We present the discovery of neutral gas detected in both damped Ly
α absorption (DLA) and Hi 21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hi bridge connecting two interacting dwarf galaxies (log (M star/M ⊙) = 8.5 ± 0.2) that host az = 0.026 DLA with log[N (Hi )/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (z QSO= 1.35). At impact parameters ofd = 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L *within at least Δv = ±300 km s−1andd ≈ 350 kpc. The Hi 21 cm emission is spatially coincident with the DLA at the 2σ –3σ level per spectral channel over several adjacent beams. However, Hi 21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioT s /f c > 1880 K). Observations with VLT-MUSE demonstrate that theα -element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi 21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.