skip to main content


Search for: All records

Creators/Authors contains: "Han, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Real‐time trends from surveillance data are important to assess and develop preparedness for influenza outbreaks. The overwhelming testing demand and limited capacity of testing laboratories for viral positivity render daily confirmed case data inaccurate and delay its availability in preparedness. Using Bayesian dynamic downscaling models, we obtained posterior estimates for daily influenza incidences from weekly estimates of the Centers for Disease Control and Prevention and daily reported constitutional and respiratory complaints during emergency department (ED) visits obtained from the state health departments. Our model provides one‐day and seven‐day lead forecasts along with 95 prediction intervals. Our hybrid Markov Chain Monte Carlo and Kalman filter algorithms facilitate faster computation and enable us to update our estimates as new data become available. Our method is tested and validated using the State of Michigan data over the years 2009‐2013. Reported constitutional and respiratory complaints at the EDs showed strong correlations of 0.81 and 0.68 respectively, with influenza rates. In general, our forecast model can be adapted to track an outbreak with only one respiratory virus as a causative agent.

     
    more » « less
  2. Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials. However, the origin of the photoluminescence (PL) and, in particular, the different photophysical properties in hybrid organic–inorganic and all inorganic halides are still poorly understood. In this work, first-principles calculations were performed to study the excitons and intrinsic defects in 0D hybrid organic–inorganic halides (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I), which exhibit a high photoluminescence quantum efficiency (PLQE) at room temperature (RT), and also in the 0D inorganic halide Cs 4 PbBr 6 , which suffers from strong thermal quenching when T > 100 K. We show that the excitons in all three 0D halides are strongly bound and cannot be detrapped or dissociated at RT, which leads to immobile excitons in (C 4 N 2 H 14 X) 4 SnX 6 . However, the excitons in Cs 4 PbBr 6 can still migrate by tunneling, enabled by the resonant transfer of excitation energy (Dexter energy transfer). The exciton migration in Cs 4 PbBr 6 leads to a higher probability of trapping and nonradiative recombination at the intrinsic defects. We show that a large Stokes shift and the negligible electronic coupling between luminescent centers are important for suppressing exciton migration; thereby, enhancing the photoluminescence quantum efficiency. Our results also suggest that the frequently observed bright green emission in Cs 4 PbBr 6 is not due to the exciton or defect-induced emission in Cs 4 PbBr 6 but rather the result of exciton emission from CsPbBr 3 inclusions trapped in Cs 4 PbBr 6 . 
    more » « less
  3. Abstract Purpose

    There are growing signs that the COVID‐19 virus has started to spread to rural areas and can impact the rural health care system that is already stretched and lacks resources. To aid in the legislative decision process and proper channelizing of resources, we estimated and compared the county‐level change in prevalence rates of COVID‐19 by rural‐urban status over 3 weeks. Additionally, we identified hotspots based on estimated prevalence rates.

    Methods

    We used crowdsourced data on COVID‐19 and linked them to county‐level demographics, smoking rates, and chronic diseases. We fitted a Bayesian hierarchical spatiotemporal model using the Markov Chain Monte Carlo algorithm in R‐studio. We mapped the estimated prevalence rates using ArcGIS 10.8, and identified hotspots using Gettis‐Ord local statistics.

    Findings

    In the rural counties, the mean prevalence of COVID‐19 increased from 3.6 per 100,000 population to 43.6 per 100,000 within 3 weeks from April 3 to April 22, 2020. In the urban counties, the median prevalence of COVID‐19 increased from 10.1 per 100,000 population to 107.6 per 100,000 within the same period. The COVID‐19 adjusted prevalence rates in rural counties were substantially elevated in counties with higher black populations, smoking rates, and obesity rates. Counties with high rates of people aged 25‐49 years had increased COVID‐19 prevalence rates.

    Conclusions

    Our findings show a rapid spread of COVID‐19 across urban and rural areas in 21 days. Studies based on quality data are needed to explain further the role of social determinants of health on COVID‐19 prevalence.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    The family of molecular level low‐dimensional organic metal halide hybrids has expanded significantly over the last few years. Here a new type of 1D metal halide structure is reported, in which metal halide octahedra form a corrugated double‐chain structure via nonplanar edge‐sharing. This material with a chemical formula of C5H16N2Pb2Br6exhibits a broadband yellow emission under ultraviolet light excitation with a photoluminescence quantum efficiency of around 10%. The light‐yellow emission is considered to be attributed to self‐trapping excitons. Theoretical calculations show that the unique alignment of the octahedra leads to small band dispersion and large exciton binding energy. Together with previously reported 1D metal halide wires and tubes, this new bulk assembly of 1D metal halides suggests the potential to develop a library of bulk assemblies of metal halides with controlled structures and compositions.

     
    more » « less