skip to main content


Search for: All records

Creators/Authors contains: "Hooten, Mevin B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes.

    Methods

    We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil.

    Results

    The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats.

    Conclusions

    The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.

     
    more » « less
  2. Abstract

    The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a Bayesian hierarchical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio-temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi-scale spatial correlation induced by plot and subplot arrangements in our study system. We also developed a Pólya–Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.

     
    more » « less
  3. Abstract Background

    Invasive reptiles pose a serious threat to global biodiversity, but early detection of individuals in an incipient population is often hindered by their cryptic nature, sporadic movements, and variation among individuals. Little is known about the mechanisms that affect the movement of these species, which limits our understanding of their dispersal. Our aim was to determine whether translocation or small-scale landscape features affect movement patterns of brown treesnakes (Boiga irregularis), a destructive invasive predator on the island of Guam.

    Methods

    We conducted a field experiment to compare the movements of resident (control) snakes to those of snakes translocated from forests and urban areas into new urban habitats. We developed a Bayesian hierarchical model to analyze snake movement mechanisms and account for attributes unique to invasive reptiles by incorporating multiple behavioral states and individual heterogeneity in movement parameters.

    Results

    We did not observe strong differences in mechanistic movement parameters (turning angle or step length) among experimental treatment groups. We found some evidence that translocated snakes from both forests and urban areas made longer movements than resident snakes, but variation among individuals within treatment groups weakened this effect. Snakes translocated from forests moved more frequently from pavement than those translocated from urban areas. Snakes translocated from urban areas moved less frequently from buildings than resident snakes. Resident snakes had high individual heterogeneity in movement probability.

    Conclusions

    Our approach to modeling movement improved our understanding of invasive reptile dispersal by allowing us to examine the mechanisms that influence their movement. We also demonstrated the importance of accounting for individual heterogeneity in population-level analyses, especially when management goals involve eradication of an invasive species.

     
    more » « less
  4. null (Ed.)
    An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools. 
    more » « less
  5. null (Ed.)
  6. Abstract

    The analysis of animal tracking data provides important scientific understanding and discovery in ecology. Observations of animal trajectories using telemetry devices provide researchers with information about the way animals interact with their environment and each other. For many species, specific geographical features in the landscape can have a strong effect on behavior. Such features may correspond to a single point (eg, dens or kill sites), or to higher dimensional subspaces (eg, rivers or lakes). Features may be relatively static in time (eg, coastlines or home-range centers), or may be dynamic (eg, sea ice extent or areas of high-quality forage for herbivores). We introduce a novel model for animal movement that incorporates active selection for dynamic features in a landscape. Our approach is motivated by the study of polar bear (Ursus maritimus) movement. During the sea ice melt season, polar bears spend much of their time on sea ice above shallow, biologically productive water where they hunt seals. The changing distribution and characteristics of sea ice throughout the year mean that the location of valuable habitat is constantly shifting. We develop a model for the movement of polar bears that accounts for the effect of this important landscape feature. We introduce a two-stage procedure for approximate Bayesian inference that allows us to analyze over 300 000 observed locations of 186 polar bears from 2012 to 2016. We use our model to estimate a spatial boundary of interest to wildlife managers that separates two subpopulations of polar bears from the Beaufort and Chukchi seas.

     
    more » « less
  7. Abstract

    Merging robust statistical methods with complex simulation models is a frontier for improving ecological inference and forecasting. However, bringing these tools together is not always straightforward. Matching data with model output, determining starting conditions, and addressing high dimensionality are some of the complexities that arise when attempting to incorporate ecological field data with mechanistic models directly using sophisticated statistical methods. To illustrate these complexities and pragmatic paths forward, we present an analysis using tree‐ring basal area reconstructions in Denali National Park (DNPP) to constrain successional trajectories of two spruce species (Picea marianaandPicea glauca) simulated by a forest gap model, University of Virginia Forest Model Enhanced—UVAFME. Through this process, we provide preliminary ecological inference about the long‐term competitive dynamics between slow‐growingP. marianaand relatively faster‐growingP. glauca. Incorporating tree‐ring data into UVAFME allowed us to estimate a bias correction for stand age with improved parameter estimates. We found that higher parameter values forP. marianaminimum growth under stress andP. glaucamaximum growth rate were key to improving simulations of coexistence, agreeing with recent research that faster‐growingP. glaucamay outcompeteP. marianaunder climate change scenarios. The implementation challenges we highlight are a crucial part of the conversation for how to bring models together with data to improve ecological inference and forecasting.

     
    more » « less
  8. Abstract

    Bayesian hierarchical models allow ecologists to account for uncertainty and make inference at multiple scales. However, hierarchical models are often computationally intensive to fit, especially with large datasets, and researchers face trade‐offs between capturing ecological complexity in statistical models and implementing these models.

    We present a recursive Bayesian computing (RB) method that can be used to fit Bayesian models efficiently in sequential MCMC stages to ease computation and streamline hierarchical inference. We also introduce transformation‐assisted RB (TARB) to create unsupervised MCMC algorithms and improve interpretability of parameters. We demonstrate TARB by fitting a hierarchical animal movement model to obtain inference about individual‐ and population‐level migratory characteristics.

    Our recursive procedure reduced computation time for fitting our hierarchical movement model by half compared to fitting the model with a single MCMC algorithm. We obtained the same inference fitting our model using TARB as we obtained fitting the model with a single algorithm.

    For complex ecological statistical models, like those for animal movement, multi‐species systems, or large spatial and temporal scales, the computational demands of fitting models with conventional computing techniques can limit model specification, thus hindering scientific discovery. Transformation‐assisted RB is one of the most accessible methods for reducing these limitations, enabling us to implement new statistical models and advance our understanding of complex ecological phenomena.

     
    more » « less