skip to main content


Search for: All records

Creators/Authors contains: "Jensen, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Vegetation is a key component controlling soil accretion in coastal wetlands through production of belowground organic matter and enhanced deposition of mineral sediments. Vegetation structure is a proxy for wetland health and degradation that can be monitored at large scales with remote sensing. Among different multispectral indices, the Normalized Difference Vegetation Index (NDVI) is generally used for this purpose. Using Google Earth Engine (GEE), NDVI time‐series are extracted around 45 monitoring stations of the Coastwide Reference Monitoring System (CRMS) located in Terrebonne Bay, Louisiana, USA. NDVI tends to increase from saline to freshwater wetlands. Using these NDVI observations and in situ measurements of salinity, soil accretion rates, and geomorphic metrics (i.e., elevation, distance from the bay or from the nearest channel bank), empirical models were developed to derive maps of organic mass accumulation rates and salinity. The analysis shows that NDVI can be used to reproduce the salinity gradient in Terrebonne Bay, as the index captures differences in vegetation cover, which depend on salinity. A negative relationship between NDVI and organic accumulation mass rates is also found, indicating that saline marshes tend to accumulate more organic material compared to fresh wetlands.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Several recent studies from both Greenland and Antarctica have reported significant changes in the water isotopic composition of near‐surface snow between precipitation events. These changes have been linked to isotopic exchange with atmospheric water vapor and sublimation‐induced fractionation, but the processes are poorly constrained by observations. Understanding and quantifying these processes are crucial to both the interpretation of ice core climate proxies and the formulation of isotope‐enabled general circulation models. Here, we present continuous measurements of the water isotopic composition in surface snow and atmospheric vapor together with near‐surface atmospheric turbulence and snow‐air latent and sensible heat fluxes, obtained at the East Greenland Ice‐Core Project drilling site in summer 2016. For two 4‐day‐long time periods, significant diurnal variations in atmospheric water isotopologues are observed. A model is developed to explore the impact of this variability on the surface snow isotopic composition. Our model suggests that the snow isotopic composition in the upper subcentimeter of the snow exhibits a diurnal variation with amplitudes in δ18O and δD of ~2.5‰ and ~13‰, respectively. As comparison, such changes correspond to 10–20% of the magnitude of seasonal changes in interior Greenland snow pack isotopes and of the change across a glacial‐interglacial transition. Importantly, our observation and model results suggest, that sublimation‐induced fractionation needs to be included in simulations of exchanges between the vapor and the snow surface on diurnal timescales during summer cloud‐free conditions in northeast Greenland.

     
    more » « less