skip to main content


Search for: All records

Creators/Authors contains: "Joshi, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The student body in university science classrooms is increasingly diverse demographically and this change brings with it an increased chance of mismatch between professor’s expectations and students’ behaviors. Being aware of how cultural expectations influence teaching and learning is the first step in understanding and overcoming these mismatches in order to help all students succeed. This involves making expectations clear, particularly about homework requirements (Ludwig et al., 2011), and defining the line between collaboration and cheating (Craig et al., 2010). When possible, professors should be flexible regarding different cultures’ ideas of time (Hall, 1983), family obligations (Hoover, 2017), and the social power structure (Hofstede, 1986; Yoo, 2014). At the same time, professors should maintain high expectations of all students regardless of ethnic background (Rosenthal & Jacobson, 1968). Drawing from published research as well as interview and survey data, we highlight ways for both professors and students to create an atmosphere of belonging (Walton & Cohen, 2011) and an appreciation of people from all cultures (Museus et al., 2017). 
    more » « less
  2. This Research Work-in-Progress paper builds on previous literature related to the professional formation of engineers and issues pertaining to diversity and inclusion within engineering though a comparative analysis of two different disciplines. These issues are complex, interrelated and challenging to untangle, and thus require innovative strategies to explore them. Our larger study utilizes design thinking with an embedded mixed-methods research approach to investigate foundational understandings of professional formation and diversity and inclusion in engineering. Herein, we describe preliminary findings from co-design sessions we conducted in Biomedical Engineering (BME) and Electrical and Computer Engineering (ECE) at Purdue University. We compare the design solutions generated by stakeholders and discuss insights regarding the unique contexts and needs of each program, as well as the impacts of the different activities and contexts of the design sessions themselves. 
    more » « less
  3. The lack of diversity and inclusion has been a major challenge affecting engineering programs all over the United States. This problem has been persistent over the years and has been difficult to address despite considerable amount of attention, enriched conversations, and money that has been put towards addressing it. One of the reasons behind this lack of diversity could be the presence of exclusionary behaviors, such as bias and discrimination that permeate the culture of engineering. To address this “wicked” problem, a deeper understanding of current culture and of potential change strategies toward integrating inclusion and diversity is necessary. Our larger NSF funded research project seeks to achieve this understanding through design thinking. While design thinking has been documented to successfully achieve desired outcomes for numerous other problems, its effectiveness as a tool to understand and solve the “wicked problem” of transformation of disciplinary culture related to diversity and inclusion in engineering is not yet known. This Work-in-Progress paper will address the effectiveness of using a design thinking approach by answering the research question: How did stakeholder participants perceive the impact of design sessions on their understanding and value of diversity and inclusion in the professional formation of biomedical engineers? To address this research question, our research team is coordinating six design sessions within each of two engineering schools: Electrical and Computer Engineering (ECE) and Biomedical Engineering (BME) at a large Midwest University. Currently, we have completed the initial phases of the design sessions in the BME school, and hence this paper focuses on insights from preliminary data analysis of BME Design sessions. BME design sessions were conducted with 15 key stakeholders from the program including students, faculty, staff and administrators. Each of the six design session was two hours long. The research team facilitated the inspiration and ideation phase of the design thinking process throughout. Facilitation involved providing prompts and activities to guide the stakeholders through the design thinking processes of problem identification, problem scoping, and prototype solution generation related to diversity and inclusion within the school culture. A mixed-methods approach involving both qualitative and quantitative data analysis is being used to evaluate the efficacy of design thinking as a tool to address diversity and inclusion in professional formation of engineers. Artifacts such as journey maps, culture maps, and design notebooks generated by our stakeholders throughout the design sessions will be qualitatively analyzed to evaluate the role and effectiveness of design thinking in shaping a more diverse and inclusive culture within BME and, eventually ECE. Following the design sessions, participants were interviewed one-on-one to understand how their thoughts about diversity and inclusion in professional formation of biomedical engineers may have changed, and to gather participants’ self-assessment of the design process. Coupled with the interviews, an online survey was administered to assess the participants’ ranking of the solutions generated at the conclusion design sessions in terms of their novelty, importance and feasibility for implementation within their school. This Work-in-Progress paper will discuss relevant findings from initial quantitative analyses of the data collected from the post-design session surveys and is an interim report evaluating participants’ perceptions of the impact of these design sessions on their understanding of diversity and inclusion in professional formation of biomedical engineers. 
    more » « less
  4. This project explores how engineering students understand diversity and inclusion within their engineering programs, and how these understandings are shaped by aspects of the environment in which they are situated. Our study is a component of a broader research project that is examining the seemingly intractable problems of diversity and inclusion that emerge through the converging threads of formation of professional identity and culture of engineering disciplines. In this study we utilized a qualitative analysis of interview data to explore the undergraduate students’ perceptions of diversity and inclusion within the School of Electrical and Computer Engineering (ECE) at Purdue University [1]. Our interview draws upon cultural dimensions of engineering disciplines that encourage student to reflect upon and assess diversity and inclusion efforts within ECE [2]. To interrogate students’ perceptions of diversity and inclusion, we interviewed 13 current or past undergraduate ECE students. With nearly 40 percent of the undergraduate ECE students identifying as international students, such a significant international population poses tremendous learning opportunities as well as challenges related to diversity and inclusion. Thus, formal efforts within ECE have been made to bridge cultural differences, develop intercultural competencies, and promote inclusion of internationally and domestically diverse ECE members. However, these efforts have met with mixed results. Our analysis of the interview data suggests that these efforts often were not aligned with literature about how to successfully bridge culture differences in that they lacked an explicit focus on students’ understandings of diversity and inclusion, nor did they provide opportunities for students to reflect on their personal and educational experiences. In what follows, we first examine the framing of scholarship about diversity and inclusion within engineering and then draw upon literature using Kolb’s experiential learning models to illuminate the transformational nature that reflection plays within establishing ways of viewing complex social problems. With this combination and reimagining of reflection as a pathway to more deeply understanding diversity and inclusion, we describe our research methods, data analysis, and the findings from our qualitative analysis. Finally, we conclude with a discussion of the tensions pertaining to difference and sameness that emerged through our analysis. Namely, formal efforts within ECE required both scaffolding and intentionality. Without proper facilitation, the central role that diversity and inclusion plays within professional formation appeared forced, created more cultural isolation, or students ignored these efforts altogether to complete assignments. We conclude by offering both theoretical and pragmatic implications for engineering curriculum. 
    more » « less
  5. A<sc>bstract</sc>

    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb1of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of theWZ+ jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  6. Free, publicly-accessible full text available January 1, 2025
  7. Abstract

    Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs‐RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P‐to‐S (Ps)‐ and PPs‐RFs withInSightrecordings of five marsquakes. Our Ps‐RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps‐RFs, our PPs‐RFs lack an arrival at 7.2 s lag time. Whereas Ps‐RFs on Mars could be equally well fit by a two‐ or three‐layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three‐layer crust, and is highly sensitive to velocity and thickness of intra‐crustal layers. We show that a three‐layer crust is also preferred by S‐to‐P (Sp)‐RFs. While the deepest interface of the three‐layer crust represents the crust‐mantle interface beneath theInSightlanding site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre‐existing crustal materials. PPs‐RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data‐constrained circumstances such as planetary missions.

     
    more » « less
  8. A<sc>bstract</sc>

    A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons (eorμ) with the same electric charge, or three leptons. The analysis uses 139 fb1ofppcollision data at$$ \sqrt{s} $$s= 13 TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and withoutR-parity conservation are considered. In topologies with intermediate states including eitherWhorWZpairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a naturalR-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for anR-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  9. Search for a new pseudoscalar a-boson decaying to muons in events with additional top quark pairs. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  10. A<sc>bstract</sc>

    A search for dark matter produced in association with a Higgs boson in final states with two hadronically decayingτ-leptons and missing transverse momentum is presented. The analysis uses 139 fb1of proton-proton collision data at$$ \sqrt{s} $$s= 13 TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence of physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+amodel featuring two scalar Higgs doublets and a pseudoscalar singlet field. Exclusion limits on the parameters of the model in selected benchmark scenarios are derived at 95% confidence level. Model-independent limits are also set on the visible cross-section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying intoτ-leptons.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024