skip to main content


Search for: All records

Creators/Authors contains: "Kiani, Fatemeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Progress in hardware and algorithms for artificial intelligence (AI) has ushered in large machine learning models and various applications impacting our everyday lives. However, today's AI, mainly artificial neural networks, still cannot compete with human brains because of two major issues: the high energy consumption of the hardware running AI models and the lack of ability to generalize knowledge and self-adapt to changes. Neuromorphic systems built upon emerging devices, for instance, memristors, provide a promising path to address these issues. Although innovative memristor devices and circuit designs have been proposed for neuromorphic computing and applied to different proof-of-concept applications, there is still a long way to go to build large-scale low-power memristor-based neuromorphic systems that can bridge the gap between AI and biological brains. This Perspective summarizes the progress and challenges from memristor devices to neuromorphic systems and proposes possible directions for neuromorphic system implementation based on memristive devices. 
    more » « less
  2. Abstract

    A diffusive memristor is a promising building block for brain‐inspired computing hardware. However, the randomness in the device relaxation dynamics limits the wide‐range adoption of diffusive memristors in large arrays. In this work, the device stack is engineered to achieve a much‐improved uniformity in the relaxation time (standard deviation σ reduced from ≈12 to ≈0.32 ms). The memristor is further connected with a resistor or a capacitor and the relaxation time is tuned between 1.13 µs and 1.25 ms, ranging from three orders of magnitude. The hierarchy of time surfaces (HOTS) algorithm, to utilize the tunable and uniform relaxation behavior for spike generation, is implemented. An accuracy of 77.3% is achieved in recognizing moving objects in the neuromorphic MNIST (N‐MNIST) dataset. The work paves the way for building emerging neuromorphic computing hardware systems with ultralow power consumption.

     
    more » « less
  3.  
    more » « less