Abstract Different from nonvolatile memory applications, neuromorphic computing applications utilize not only the static conductance states but also the switching dynamics for computing, which calls for compact dynamical models of memristive devices. In this work, a generalized model to simulate diffusive and drift memristors with the same set of equations is presented, which have been used to reproduce experimental results faithfully. The diffusive memristor is chosen as the basis for the generalized model because it possesses complex dynamical properties that are difficult to model efficiently. A data set from statistical measurements on SiO2:Ag diffusive memristors is collected to verify the validity of the general model. As an application example, spike‐timing‐dependent plasticity is demonstrated with an artificial synapse consisting of a diffusive memristor and a drift memristor, both modeled with this comprehensive compact model.
more »
« less
Diffusive Memristors with Uniform and Tunable Relaxation Time for Spike Generation in Event‐Based Pattern Recognition
Abstract A diffusive memristor is a promising building block for brain‐inspired computing hardware. However, the randomness in the device relaxation dynamics limits the wide‐range adoption of diffusive memristors in large arrays. In this work, the device stack is engineered to achieve a much‐improved uniformity in the relaxation time (standard deviation σ reduced from ≈12 to ≈0.32 ms). The memristor is further connected with a resistor or a capacitor and the relaxation time is tuned between 1.13 µs and 1.25 ms, ranging from three orders of magnitude. The hierarchy of time surfaces (HOTS) algorithm, to utilize the tunable and uniform relaxation behavior for spike generation, is implemented. An accuracy of 77.3% is achieved in recognizing moving objects in the neuromorphic MNIST (N‐MNIST) dataset. The work paves the way for building emerging neuromorphic computing hardware systems with ultralow power consumption.
more »
« less
- Award ID(s):
- 2023752
- PAR ID:
- 10373233
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent studies of resistive switching devices with hexagonal boron nitride (h-BN) as the switching layer have shown the potential of two-dimensional (2D) materials for memory and neuromorphic computing applications. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. These characteristics are of interest for the implementation of neuromorphic computing and machine learning hardware based on memristor crossbars. However, existing demonstrations of h-BN memristors focus on single isolated device switching properties and lack attention to fundamental machine learning functions. This paper demonstrates the hardware implementation of dot product operations, a basic analog function ubiquitous in machine learning, using h-BN memristor arrays. Moreover, we demonstrate the hardware implementation of a linear regression algorithm on h-BN memristor arrays.more » « less
-
Abstract Artificial synaptic devices are the essential hardware component in emerging neuromorphic computing systems by mimicking biological synapse and brain functions. When made from natural organic materials such as protein and carbohydrate, they have potential to improve sustainability and reduce electronic waste by enabling environmentally‐friendly disposal. In this paper, a new natural organic memristor based artificial synaptic device is reported with the memristive film processed by a honey and carbon nanotube (CNT) admixture, that is, honey‐CNT memristor. Optical microscopy, scanning electron microscopy, and micro‐Raman spectroscopy are employed to analyze the morphology and chemical structure of the honey‐CNT film. The device demonstrates analog memristive potentiation and depression, with the mechanism governing these functions explained by the formation and dissolution of conductive paths due to the electrochemical metal filaments which are assisted by CNT clusters and bundles in the honey‐CNT film. The honey‐CNT memristor successfully emulates synaptic functionalities such as short‐term plasticity and its transition to long‐term plasticity for memory rehearsal, spatial summation, and shunting inhibition, and for the first time, the classical conditioning behavior for associative learning by mimicking the Pavlov's dog experiment. All these results testify that honey‐CNT memristor based artificial synaptic device is promising for energy‐efficient and eco‐friendly neuromorphic systems.more » « less
-
Co-localized memory and processing components are necessary for the creation of scalable neuromorphic hardware, and these components can be produced using inexpensive techniques. While memristors have emerged as promising candidates for synaptic emulation, most devices rely on complex fabrication processes that hinder large-scale deployment. This work presents a fully inkjet-printed memristor utilizing hexagonal boron nitride (hBN) and graphene inks, demonstrating a manufacturable approach to neuromorphic systems. The devices exhibit nonvolatile resistive switching with symmetric pinched hysteresis loops [Formula: see text] and tunable conductance states. Furthermore, a piece-wise nonlinear memristor model was developed and implemented in Simscape to enable system-level simulations. A [Formula: see text] reservoir computing architecture, constructed using these memristive devices, successfully demonstrated temporal pattern processing and feature extraction capabilities. The results establish printed memristors as viable building blocks for next-generation edge computing applications, combining the advantages of solution-processable materials with neuromorphic functionality.more » « less
-
Progress in hardware and algorithms for artificial intelligence (AI) has ushered in large machine learning models and various applications impacting our everyday lives. However, today's AI, mainly artificial neural networks, still cannot compete with human brains because of two major issues: the high energy consumption of the hardware running AI models and the lack of ability to generalize knowledge and self-adapt to changes. Neuromorphic systems built upon emerging devices, for instance, memristors, provide a promising path to address these issues. Although innovative memristor devices and circuit designs have been proposed for neuromorphic computing and applied to different proof-of-concept applications, there is still a long way to go to build large-scale low-power memristor-based neuromorphic systems that can bridge the gap between AI and biological brains. This Perspective summarizes the progress and challenges from memristor devices to neuromorphic systems and proposes possible directions for neuromorphic system implementation based on memristive devices.more » « less
An official website of the United States government
