skip to main content


Search for: All records

Creators/Authors contains: "Kim, Duck Bong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wire arc additive manufacturing (WAAM) has gained attention as a feasible process in large-scale metal additive manufacturing due to its high deposition rate, cost efficiency, and material diversity. However, WAAM induces a degree of uncertainty in the process stability and the part quality owing to its non-equilibrium thermal cycles and layer-by-layer stacking mechanism. Anomaly detection is therefore necessary for the quality monitoring of the parts. Most relevant studies have applied machine learning to derive data-driven models that detect defects through feature and pattern learning. However, acquiring sufficient data is time- and/or resource-intensive, which introduces a challenge to applying machine learning-based anomaly detection. This study proposes a multisource transfer learning method that generates anomaly detection models for balling defect detection, thus ensuring quality monitoring in WAAM. The proposed method uses convolutional neural network models to extract sufficient image features from multisource materials, then transfers and fine-tunes the models for anomaly detection in the target material. Stepwise learning is applied to extract image features sequentially from individual source materials, and composite learning is employed to assign the optimal frozen ratio for converging transferred and present features. Experiments were performed using a gas tungsten arc welding-based WAAM process to validate the classification accuracy of the models using low-carbon steel, stainless steel, and Inconel.

     
    more » « less
  2. Free, publicly-accessible full text available August 22, 2024
  3. In recent years, manufacturing industries (e.g., medical, aerospace, and automobile) have been changing their manufacturing process to small-quantity batch production to flexibly cope with fluctuations in demand. Therefore, many companies are trying to produce products by introducing 3D printing technology into the manufacturing process. The 3D printing process is based on additive manufacturing (AM), which can fabricate complex shapes and reduce material waste and production time. Although AM has many advantages, its product quality is poor compared to conventional manufacturing systems. This study proposes a methodology to improve the quality of AM products based on data analysis. The targeted quality of AM is the surface roughness of the stacked wall. Surface roughness is one of the important quality indicators and can cause short product life and poor structure performance. To control the surface roughness, the resultant surface roughness needs to be predicted in advance depending on the process parameters. Various analysis methods such as data pre-processing and deep neural networks (DNN) combined with sensor data are used to predict surface roughness in the proposed methodology. The proposed methodology is applied to field data from operated wire + arc additive manufacturing (WAAM), and the analysis result shows its effectiveness, with a mean absolute percentage error (MAPE) of 1.93%. 
    more » « less
  4. null (Ed.)
    Purpose Due to the complexity of and variations in additive manufacturing (AM) processes, there is a level of uncertainty that creates critical issues in quality assurance (QA), which must be addressed by time-consuming and cost-intensive tasks. This deteriorates the process repeatability, reliability and part reproducibility. So far, many AM efforts have been performed in an isolated and scattered way over several decades. In this paper, a systematically integrated holistic view is proposed to achieve QA for AM. Design/methodology/approach A systematically integrated view is presented to ensure the predefined part properties before/during/after the AM process. It consists of four stages, namely, QA plan, prospective validation, concurrent validation and retrospective validation. As a foundation for QA planning, a functional workflow and the required information flows are proposed by using functional design models: Icam DEFinition for Function Modeling. Findings The functional design model of the QA plan provides the systematically integrated view that can be the basis for inspection of AM processes for the repeatability and qualification of AM parts for reproducibility. Research limitations/implications A powder bed fusion process was used to validate the feasibility of this QA plan. Feasibility was demonstrated under many assumptions; real validation is not included in this study. Social implications This study provides an innovative and transformative methodology that can lead to greater productivity and improved quality of AM parts across industries. Furthermore, the QA guidelines and functional design models provide the foundation for the development of a QA architecture and management system. Originality/value This systematically integrated view and the corresponding QA plan can pose fundamental questions to the AM community and initiate new research efforts in the in-situ digital inspection of AM processes and parts. 
    more » « less
  5.  
    more » « less