skip to main content


Title: Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural Network
In recent years, manufacturing industries (e.g., medical, aerospace, and automobile) have been changing their manufacturing process to small-quantity batch production to flexibly cope with fluctuations in demand. Therefore, many companies are trying to produce products by introducing 3D printing technology into the manufacturing process. The 3D printing process is based on additive manufacturing (AM), which can fabricate complex shapes and reduce material waste and production time. Although AM has many advantages, its product quality is poor compared to conventional manufacturing systems. This study proposes a methodology to improve the quality of AM products based on data analysis. The targeted quality of AM is the surface roughness of the stacked wall. Surface roughness is one of the important quality indicators and can cause short product life and poor structure performance. To control the surface roughness, the resultant surface roughness needs to be predicted in advance depending on the process parameters. Various analysis methods such as data pre-processing and deep neural networks (DNN) combined with sensor data are used to predict surface roughness in the proposed methodology. The proposed methodology is applied to field data from operated wire + arc additive manufacturing (WAAM), and the analysis result shows its effectiveness, with a mean absolute percentage error (MAPE) of 1.93%.  more » « less
Award ID(s):
2015693
NSF-PAR ID:
10412649
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
20
ISSN:
1424-8220
Page Range / eLocation ID:
7955
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents an overview and a few case studies to explicate the transformative power of diverse imaging techniques for smart manufacturing, focusing largely on variousin-situandex-situimaging methods for monitoring fusion-based metal additive manufacturing (AM) processes such as directed energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM).In-situimaging techniques, encompassing high-speed cameras, thermal cameras, and digital cameras, are becoming increasingly affordable, complementary, and are emerging as vital for real-time monitoring, enabling continuous assessment of build quality. For example, high-speed cameras capture dynamic laser-material interaction, swiftly detecting defects, while thermal cameras identify thermal distribution of the melt pool and potential anomalies. The data gathered fromin-situimaging are then utilized to extract pertinent features that facilitate effective control of process parameters, thereby optimizing the AM processes and minimizing defects. On the other hand,ex-situimaging techniques play a critical role in comprehensive component analysis. Scanning electron microscopy (SEM), optical microscopy, and 3D-profilometry enable detailed characterization of microstructural features, surface roughness, porosity, and dimensional accuracy. Employing a battery of Artificial Intelligence (AI) algorithms, information from diverse imaging and other multi-modal data sources can be fused, and thereby achieve a more comprehensive understanding of a manufacturing process. This integration enables informed decision-making for process optimization and quality assurance, as AI algorithms analyze the combined data to extract relevant insights and patterns. Ultimately, the power of imaging in additive manufacturing lies in its ability to deliver real-time monitoring, precise control, and comprehensive analysis, empowering manufacturers to achieve supreme levels of precision, reliability, and productivity in the production of components.

     
    more » « less
  2. Abstract There is an urgent need for developing collaborative process-defect modeling in metal-based additive manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable machine learning models for in-situ anomaly detection. The requirements for large data are especially challenging for small-to-medium manufacturers (SMMs), for whom collecting copious amounts of data is usually cost prohibitive. The objective of this research is to develop a secured data sharing mechanism for directed energy deposition (DED) based AM without disclosing product design information, facilitating secured data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise from data sharing, since AM process data contain confidential design information, such as the printing path. The proposed adaptive design de-identification for additive manufacturing (ADDAM) methodology integrates AM process knowledge into an adaptive de-identification procedure to mask the printing trajectory information in metal-based AM thermal history, which otherwise discloses substantial printing path information. This adaptive approach applies a flexible data privacy level to each thermal image based on its similarity with the other images, facilitating better data utility preservation while protecting data privacy. A real-world case study was used to validate the proposed method based on the fabrication of two cylindrical parts using a DED process. These results are expressed as a Pareto optimal solution, demonstrating significant improvements in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up to 30% with as little as 0% losses in dataset utility after de-identification. 
    more » « less
  3. Abstract

    Uncertainty quantification (UQ) in metal additive manufacturing (AM) has attracted tremendous interest in order to dramatically improve product reliability. Model-based UQ, which relies on the validity of a computational model, has been widely explored as a potential substitute for the time-consuming and expensive UQ solely based on experiments. However, its adoption in the practical AM process requires overcoming two main challenges: (1) the inaccurate knowledge of uncertainty sources and (2) the intrinsic uncertainty associated with the computational model. Here, we propose a data-driven framework to tackle these two challenges by combining high throughput physical/surrogate model simulations and the AM-Bench experimental data from the National Institute of Standards and Technology (NIST). We first construct a surrogate model, based on high throughput physical simulations, for predicting the three-dimensional (3D) melt pool geometry and its uncertainty with respect to AM parameters and uncertainty sources. We then employ a sequential Bayesian calibration method to perform experimental parameter calibration and model correction to significantly improve the validity of the 3D melt pool surrogate model. The application of the calibrated melt pool model to UQ of the porosity level, an important quality factor, of AM parts, demonstrates its potential use in AM quality control. The proposed UQ framework can be generally applicable to different AM processes, representing a significant advance toward physics-based quality control of AM products.

     
    more » « less
  4. The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements. 
    more » « less
  5. Andrew Yeh-Ching Nee, editor-ion-chief (Ed.)
    Wire arc additive manufacturing (WAAM) has received increasing use in 3D printing because of its high deposition rates suitable for components with large and complex geometries. However, the lower forming accuracy of WAAM than other metal additive manufacturing methods has imposed limitations on manufacturing components with high precision. To resolve this issue, we herein implemented the hybrid manufacturing (HM) technique, which integrated WAAM and subtractive manufacturing (via a milling process), to attain high forming accuracy while taking advantage of both WAAM and the milling process. We describe in this paper the design of a robot-based HM platform in which the WAAM and CNC milling are integrated using two robotic arms: one for WAAM and the other for milling immediately following WAAM. The HM was demonstrated with a thin-walled aluminum 5356 component, which was inspected by X-ray micro-computed tomography (μCT) for porosity visualization. The temperature and cutting forces in the component under milling were acquired for analysis. The surface roughness of the aluminum component was measured to assess the surface quality. In addition, tensile specimens were cut from the components using wire electrical discharge machining (WEDM) for mechanical testing. Both machining quality and mechanical properties were found satisfactory; thus the robot-based HM platform was shown to be suitable for manufacturing high-quality aluminum parts. 
    more » « less