skip to main content


Search for: All records

Creators/Authors contains: "Klein, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Background: COVID-19 vaccines have been approved and made available. While questions of vaccine allocation strategies have received significant attention, important questions remain regarding the potential impact of the vaccine given uncertainties regarding efficacy against transmission, availability, timing, and durability. Methods: We adapted a susceptible-exposed-infectious-recovered (SEIR) model to examine the potential impact on hospitalization and mortality assuming increasing rates of vaccine efficacy, coverage, and administration. We also evaluated the uncertainty of the vaccine to prevent infectiousness as well as the impact on outcomes based on the timing of distribution and the potential effects of waning immunity. Findings: Increased vaccine efficacy against disease reduces hospitalizations and deaths from COVID-19; however, the relative benefit of transmission blocking varied depending on the timing of vaccine distribution. Early in an outbreak, a vaccine that reduces transmission will be relatively more effective than one introduced later in the outbreak. In addition, earlier and accelerated implementation of a less effective vaccine is more impactful than later implementation of a more effective vaccine. These findings are magnified when considering the durability of the vaccine. Vaccination in the spring will be less impactful when immunity is less durable. Interpretation: Policy choices regarding non-pharmaceutical interventions, such as social distancing and face mask use, will need to remain in place longer if the vaccine is less effective at reducing transmission or distributed slower. In addition, the stage of the local outbreak greatly impacts the overall effectiveness of the vaccine in a region and should be considered when allocating vaccines. 
    more » « less
  2. Abstract

    A tectonic window into the upper 2,000 m of oceanic crust generated at the superfast spreading (∼142 mm/yr) southern East Pacific Rise exposes a continuous layered structure of basaltic lavas and sheeted dikes over gabbroic rocks. This relatively simple structure is in accord with expectations for crustal accretion at a very fast spreading rate and high magma budget where magmatic construction keeps pace with plate separation. Detailed observations show that basaltic lava flows dip progressively more steeplyinward(toward the spreading axis where they were erupted). Underlying sheeted dikes are faulted and tectonically rotated to dip steeplyoutward. These structures are interpreted in terms of subsidence beneath the axis of the southern East Pacific Rise during crustal construction that allowed the lava unit to thicken to >400 m without creating comparable relief at the spreading center. Transitional units above and below the sheeted dike complex show that the thickness of upper crustal rock units is modified by tectonic and intrusive processes during accretion. The crustal structure shows that even approaching the superfast spreading end‐member of seafloor spreading, crustal accretion involves dramatic tectonic processes that are not obvious from the surface geology of spreading centers.

     
    more » « less
  3. Abstract

    Non‐growing season CO2emissions from Arctic tundra remain a major uncertainty in forecasting climate change consequences of permafrost thaw. We present the first time series of soil and microbial CO2emissions from a graminoid tundra based on year‐round in situ measurements of the radiocarbon content of soil CO214CO2) and of bulk soil C (Δ14C), microbial activity, and temperature. Combining these data with land‐atmosphere CO2exchange allows estimates of the proportion and mean age of microbial CO2emissions year‐round. We observe a seasonal shift in emission sources from fresh carbon during the growing season (August Δ14CO2 = 74 ± 4.7‰, 37% ± 3.4% microbial, mean ± se) to increasingly older soil carbon in fall and winter (March Δ14CO2 = 22 ± 1.3‰, 47% ± 8% microbial). Thus, rising soil temperatures and emissions during fall and winter are depleting aged soil carbon pools in the active layer and thawing permafrost and further accelerating climate change.

     
    more » « less