skip to main content


Search for: All records

Creators/Authors contains: "Koulakova, Ekaterina A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Li-Sn binary system has been the focus of extensive research because it features Li-rich alloys with potential applications as battery anodes. Our present re-examination of the binary system with a combination of machine learning and ab initio methods has allowed us to screen a vast configuration space and uncover a number of overlooked thermodynamically stable alloys. At ambient pressure, our evolutionary searches identified an additional stable Li3Sn phase with a large BCC-based hR48 structure and a possible high-TLiSn4ground state. By building a simple model for the observed and predicted Li-Sn BCC alloys we constructed an even larger viable hR75 structure at an exotic 19:6 stoichiometry. At 20 GPa, low-symmetry 11:2, 5:1, and 9:2 phases found with our global searches destabilize previously proposed phases with high Li content. The findings showcase the appreciable promise machine-learning interatomic potentials hold for accelerating ab initio prediction of complex materials.

     
    more » « less
  2. Cu3Sn, a well-known intermetallic compound with a high melting temperature and thermal stability, has found numerous applications in microelectronics, 3D printing, and catalysis. However, the relationship between the material's thermal conductivity anisotropy and its complex anti-phase boundary superstructure is not well understood. Here, frequency domain thermoreflectance was used to map the thermal conductivity variation across the surface of arc-melted polycrystalline Cu3Sn. Complementary electron backscatter diffraction and transmission electron microscopy revealed the thermal conductivity in the principal a, b, and c orientations to be 57.6, 58.9, and 67.2 W/m-K, respectively. Density functional theory calculations for several Cu3Sn superstructures helped examine thermodynamic stability factors and evaluate the direction-resolved electron transport properties in the relaxation time approximation. The analysis of computed temperature- and composition-dependent free energies suggests metastability of the known long-period Cu3Sn superstructures while the transport calculations indicate a small directional variation in the thermal conductivity. The ∼15% anisotropy measured and computed in this study is well below previously reported experimental values for samples grown by liquid-phase electroepitaxy. 
    more » « less