skip to main content


Search for: All records

Creators/Authors contains: "Lazio, T. Joseph W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mrk 1018 is a nearby changing-look active galactic nucleus (AGN) that has oscillated between spectral Type 1.9 and Type 1 over a period of 40 yr. Recently, a recoiling supermassive black hole (rSMBH) scenario has been proposed to explain the spectral and flux variability observed in this AGN. Detections of rSMBHs are important for understanding the processes by which SMBH binaries merge and how rSMBHs influence their galactic environment through feedback mechanisms. However, conclusive identification of any rSMBHs has remained elusive to date. In this paper, we present an analysis of 6.5 yr of multifrequency Very Long Baseline Array monitoring of Mrk 1018. We find that the radio emission is compact down to 2.4 pc, and it displays flux density and spectral variability over the length of our campaign, typical of a flat-spectrum radio core. We observe proper motion in RA of the radio core at −36.4 ± 8.6μas yr−1(4.2σ), or 0.10c± 0.02cat the redshift of Mrk 1018. No significant proper motion is found in DEC (31.3 ± 25.1μas yr−1). We discuss possible physical mechanisms driving the proper motion, including an rSMBH. We conclude that the apparent velocity we observe of the VLBI radio core is too high to reconcile with theoretical predictions of rSMBH velocities and that the proper motion is most likely dominated by an unresolved, outflowing jet component. Future observations may yet reveal the true nature of Mrk 1018. However, our observations are not able to confirm it as a true rSMBH.

     
    more » « less
  2. Abstract

    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency,ν) nor a change in dispersion measure alone (which would produce a delay proportional toν−2). However, it does bear some resemblance to the two previous “chromatic timing events” observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015.

     
    more » « less
  3. ABSTRACT

    The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star formation rate, implicating a ubiquitously occurring progenitor object. FRBs localized with ∼arcsecond accuracy also enable effective searches for associated multiwavelength and multi-time-scale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localization of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z = 0.098) and persistent radio source. The galaxy is massive (${\sim}3\times 10^{10}\, \text{M}_{\odot }$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of 1.2 × 1029 erg s−1 Hz−1, and show that is extended on scales ≳50 mas. We associate this radio emission with the ongoing star formation activity in SDSS J050803.48+260338.0. Deeper, high-resolution optical observations are required to better utilize the milliarcsecond-scale localization of FRB 20201124A and determine the origin of the large dispersion measure (150–220 pc cm−3) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, but is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations.

     
    more » « less