skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: An Unusual Pulse Shape Change Event in PSR J1713+0747 Observed with the Green Bank Telescope and CHIME
Abstract The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency,ν) nor a change in dispersion measure alone (which would produce a delay proportional toν−2). However, it does bear some resemblance to the two previous “chromatic timing events” observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015.  more » « less
Award ID(s):
2125764 2020265
PAR ID:
10497693
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 179
Size(s):
Article No. 179
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Single-pulse studies are important to understand the pulsar emission mechanism and the noise floor in precision timing. We study total intensity and polarimetry properties of three bright millisecond pulsars – PSRs J1022+1001, J1713+0747, and B1855+09 – that have detectable single pulses at multiple frequencies. We report for the first time the detection of single pulses from PSRs J1022+1001 and J1713+0747 at 4.5 GHz. In addition, for those two pulsars, the fraction of linear polarization in the average profile is significantly reduced at 4.5 GHz, compared to 1.38 GHz, which could support the expected deviation from a dipolar field closer to the pulsar surface. There is a hint of orthogonal modes in the single pulses of PSR J1713+0747. More sensitive multifrequency observations may be useful to confirm these findings. The jitter noise contributions at 1.38 GHz, scaled to one hour, for PSRs J1022+1001, J1713+0747, and B1855+09 are ≈135, ≈45, and ≈60 ns, respectively and are consistent with previous studies. We also show that selective bright-pulse timing of PSR J1022+1001 yields improved root-mean-square residuals of ≈22 $$\mu$$s, which is a factor of ≈3 better than timing using single pulses alone. 
    more » « less
  2. Abstract We present the detection of rotationally modulated, circularly polarized radio emission from the T8 brown dwarf WISE J062309.94−045624.6 between 0.9 and 2.0 GHz. We detected this high-proper-motion ultracool dwarf with the Australian SKA Pathfinder in 1.36 GHz imaging data from the Rapid ASKAP Continuum Survey. We observed WISE J062309.94−045624.6 to have a time and frequency averaged StokesIflux density of 4.17 ± 0.41 mJy beam−1, with an absolute circular polarization fraction of 66.3% ± 9.0%, and calculated a specific radio luminosity ofLν∼ 1014.8erg s−1Hz−1. In follow-up observations with the Australian Telescope Compact Array and MeerKAT we identified a multipeaked pulse structure, used dynamic spectra to place a lower limit ofB> 0.71 kG on the dwarf’s magnetic field, and measured aP= 1.912 ± 0.005 hr periodicity, which we concluded to be due to rotational modulation. The luminosity and period we measured are comparable to those of other ultracool dwarfs observed at radio wavelengths. This implies that future megahertz to gigahertz surveys, with increased cadence and improved sensitivity, are likely to detect similar or later-type dwarfs. Our detection of WISE J062309.94−045624.6 makes this dwarf the coolest and latest-type star observed to produce radio emission. 
    more » « less
  3. Abstract We report on contemporaneous optical observations at ≈10 ms timescales from the fast radio burst (FRB) 20180916B of two repeat bursts (FRB 20201023 and FRB 20220908) taken with the ‘Alopeke camera on the Gemini-North telescope. These repeats have radio fluences of 2.8 and 3.5 Jy ms, respectively, approximately in the lower 50th percentile for fluence from this repeating burst. The ‘Alopeke data reveal no significant optical detections at the FRB position and we place 3σupper limits to the optical fluences of <8.3 × 10−3and <7.7 × 10−3Jy ms after correcting for line-of-sight extinction. Together, these yield the most sensitive limits to the optical-to-radio fluence ratio of an FRB on these timescales withην< 3 × 10−3by roughly an order of magnitude. These measurements rule out progenitor models where FRB 20180916B has a similar fluence ratio to optical pulsars, such as the Crab pulsar, or where optical emission is produced as inverse-Compton radiation in a pulsar magnetosphere or young supernova remnant. Our ongoing program with ‘Alopeke on Gemini-North will continue to monitor repeating FRBs, including FRB 20180916B, to search for optical counterparts on millisecond timescales. 
    more » « less
  4. Abstract Pulsar radio emission may be generated in pair discharges that fill the pulsar magnetosphere with plasma as an accelerating electric field is screened by freshly created pairs. In this Letter, we develop a simplified analytic theory for the screening of the electric field in these pair discharges and use it to estimate total radio luminosity and spectrum. The discharge has three stages. First, the electric field is screened for the first time and starts to oscillate. Next, a nonlinear phase occurs. In this phase, the amplitude of the electric field experiences strong damping because the field dramatically changes the momenta of newly created pairs. This strong damping ceases, and the system enters a final linear phase, when the electric field can no longer dramatically change pair momenta. Applied to pulsars, this theory may explain several aspects of radio emission, including the observed luminosity,Lrad∼ 1028erg s−1, and the observed spectrum,Sω∼ω−1.4±1.0
    more » « less
  5. Abstract Pulsar timing arrays (PTAs) are designed to detect low-frequency gravitational waves (GWs). GWs induce achromatic signals in PTA data, meaning that the timing delays do not depend on radio frequency. However, pulse arrival times are also affected by radio-frequency-dependent “chromatic” noise from sources such as dispersion measure (DM) and scattering delay variations. Furthermore, the characterization of GW signals may be influenced by the choice of chromatic noise model for each pulsar. To better understand this effect, we assess if and how different chromatic noise models affect the achromatic noise properties in each pulsar. The models we compare include existing DM models used by the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and noise models used for the European PTA Data Release 2 (EPTA DR2). We perform this comparison using a subsample of six pulsars from the NANOGrav 15 yr data set, selecting the same six pulsars as from the EPTA DR2 six-pulsar data set. We find that the choice of chromatic noise model noticeably affects the achromatic noise properties of several pulsars. This is most dramatic for PSR J1713+0747, where the amplitude of its achromatic red noise lowers from log 10 A RN = 14.1 0.1 + 0.1 to 14.7 0.5 + 0.3 , and the spectral index broadens from γ RN = 2.6 0.4 + 0.5 to γ RN = 3.5 0.9 + 1.2 . We also compare each pulsar's noise properties with those inferred from the EPTA DR2, using the same models. From the discrepancies, we identify potential areas where the noise models could be improved. These results highlight the potential for custom chromatic noise models to improve PTA sensitivity to GWs. 
    more » « less