skip to main content


Search for: All records

Creators/Authors contains: "Li, Xun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon nanotubes (CNTs) are quasi-one dimensional nanostructures that display both high thermal conductivity for potential thermal management applications and intriguing low-dimensional phonon transport phenomena. In comparison to the advances made in the theoretical calculation of the lattice thermal conductivity of CNTs, thermal transport measurements of CNTs have been limited by either the poor temperature sensitivity of Raman thermometry technique or the presence of contact thermal resistance errors in sensitive two-probe resistance thermometry measurements. Here we report advances in a multi-probe measurement of the intrinsic thermal conductivity of individual multi-walled CNT samples that are transferred from the growth substrate onto the measurement device. The sample-thermometer thermal interface resistance is directly measured by this multi-probe method and used to model the temperature distribution along the contacted sample segment. The detailed temperature profile helps to eliminate the contact thermal resistance error in the obtained thermal conductivity of the suspended sample segment. A differential electro-thermal bridge measurement method is established to enhance the signal-to-noise ratio and reduce the measurement uncertainty by over 40%. The obtained thermal resistances of multiple suspended segments of the same MWCNT samples increase nearly linearly with increasing length, revealing diffusive phonon transport as a result of phonon-defect scattering in these MWCNT samples. The measured thermal conductivity increases with temperature and reaches up to 390 ± 20 W m-1 K-1 at room temperature for a 9-walled MWCNT. Theoretical analysis of the measurement results suggests submicron phonon mean free paths due to extrinsic phonon scattering by extended defects such as grain boundaries. The obtained thermal conductivity is decreased by a factor of 3 upon electron beam damage and surface contamination of the CNT sample. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Kafafi, Zakya (Ed.)
    Abstract In hybrid perovskite solar cells (PSCs), the reaction of hydrogens (H) located in the amino group of the organic A-site cations with their neighboring halides plays a central role in degradation. Inspired by the retarded biological activities of cells in heavy water, we replaced the light H atom with its abundant, twice-as-heavy, nonradioactive isotope, deuterium (D) to hamper the motion of H. This D substitution retarded the formation kinetics of the detrimental H halides in Pb-based PSCs, as well as the H bond-mediated oxidation of Sn2+ in Sn–Pb-based narrow-bandgap PSCs, evidenced by accelerated stability studies. A computational study indicated that the zero point energy of D-based formamidinium (FA) is lower than that of pristine FA. In addition, the smaller increase in entropy in D-based FA than in pristine FA accounts for the increased formation free energy of the Sn2+ vacancies, which leads to the retarded oxidation kinetics of Sn2+. In this study, we show that substituting active H with D in organic cations is an effective way to enhance the stability of PSCs without sacrificing photovoltaic (PV) performance. This approach is also adaptable to other stabilizing methods. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available October 2, 2024
  5. null (Ed.)
  6. This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop and closed-loop saddle points are characterized by the solvability of a system of two coupled generalized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic optimal control problems in an infinite horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability are equivalent. 
    more » « less
  7. null (Ed.)