skip to main content


Search for: All records

Creators/Authors contains: "Mao, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hohlfeld, O ; Moura, G ; Pelsser, C. (Ed.)
    While the DNS protocol encompasses both UDP and TCP as its underlying transport, UDP is commonly used in practice. At the same time, increasingly large DNS responses and concerns over amplification denial of service attacks have heightened interest in conducting DNS interactions over TCP. This paper surveys the support for DNS-over-TCP in the deployed DNS infrastructure from several angles. First, we assess resolvers responsible for over 66.2% of the external DNS queries that arrive at a major content delivery network (CDN). We find that 2.7% to 4.8% of the resolvers, contributing around 1.1% to 4.4% of all queries arriving at the CDN from the resolvers we study, do not properly fallback to TCP when instructed by authoritative DNS servers. Should a content provider decide to employ TCP-fallback as the means of switching to DNS-over-TCP, it faces the corresponding loss of its customers. Second, we assess authoritative DNS servers (ADNS) for over 10M domains and many CDNs and find some ADNS, serving some popular websites and a number of CDNs, that do not support DNS-over-TCP. These ADNS would deny service to (RFC-compliant) resolvers that choose to switch to TCP-only interactions. Third, we study the TCP connection reuse behavior of DNS actors and describe a race condition in TCP connection reuse by DNS actors that may become a significant issue should DNS-over-TCP and other TCP-based DNS protocols, such as DNS-over-TLS, become widely used. 
    more » « less
  2. ABSTRACT

    GRB 230812B is a bright and relatively nearby (z = 0.36) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and submillimetre bands from the GRANDMA (Global Rapid Advanced Network for Multimessenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v ∼ 17 × 103 km s−1. We analyse the photometric data first using empirical fits of the flux and then with full Bayesian inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of 5.75 × 1042 erg s−1, at $15.76^{+0.81}_{-1.21}$ d (in the observer frame) after the trigger, with a half-max time width of 22.0 d. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fitting model favours a very low density environment ($\log _{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet’s core angle $\theta _{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm {deg}$ and viewing angle $\theta _{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm {deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less
  5. Context.3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz.

    Aims.Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84.

    Methods.We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure.

    Results.We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency ofνm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field ofBSSA = (2.9 ± 1.6) G, and an equipartition magnetic field ofBeq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017–2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84.

    Conclusions.The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  6. Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair learning under the constraint of differential privacy. Our first algorithm is a private implementation of the equalized odds post-processing approach of (Hardt et al., 2016). This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of “disparate treatment”. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of (Agarwal et al., 2018) which is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation. 
    more » « less
  7. Free, publicly-accessible full text available December 1, 2024
  8. Free, publicly-accessible full text available November 1, 2024