skip to main content


Search for: All records

Creators/Authors contains: "Marks, Tobin J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    New emerging low‐dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state‐of‐the‐art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high‐throughput fabrication for large‐area and low‐cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X‐rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low‐dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low‐dimensional nanomaterials based photodetectors are also discussed.

     
    more » « less
    Free, publicly-accessible full text available May 18, 2024
  3. Carbonyl bond hydroboration is a valuable synthetic route to functionalized alcohols but relies on sometimes unselective and sluggish reagents. While rapid and selective aldehyde and ketone hydroboration mediated by trisamidolanthanide catalysts is known, the origin of the selectivity is not well-understood and is the subject of this contribution. Here the aldehyde and ketone HBpin hydroboration reaction mechanisms catalyzed by La[N(SiMe 3 ) 2 ] 3 are investigated both experimentally and theoretically. The results support initial carbonyl oxygen coordination to the acidic La center, followed by intramolecular ligand-assisted hydroboration of the carbonyl moiety by bound HBpin. Interestingly, ketone hydroboration has a higher energetic barrier than that of aldehydes due to the increased steric encumbrance and decreased electrophilicity. Utilizing NMR spectroscopy and X-ray diffraction, a bidentate acylamino lanthanide complex associated with the aldehyde hydroboration is isolated and characterized, consistent with the relative reaction rates. Furthermore, an aminomonoboronate–lanthanide complex produced when the La catalyst is exposed to excess HBpin is isolated and characterized by X-ray diffraction, illuminating unusual aminomonoboronate coordination. These results shed new light on the origin of the catalytic activity patterns, reveal a unique ligand-assisted hydroboration pathway, and uncover previously unknown catalyst deactivation pathways. 
    more » « less
  4. Free, publicly-accessible full text available July 1, 2024
  5. Abstract

    Polyolefins comprise a major fraction of single-use plastics, yet their catalytic deconstruction/recycling has proven challenging due to their inert saturated hydrocarbon connectivities. Here a very electrophilic, formally cationic earth-abundant single-site organozirconium catalyst chemisorbed on a highly Brønsted acidic sulfated alumina support and characterized by a broad array of experimental and theoretical techniques, is shown to mediate the rapid hydrogenolytic cleavage of molecular and macromolecular saturated hydrocarbons under mild conditions, with catalytic onset as low as 90 °C/0.5 atm H2with 0.02 mol% catalyst loading. For polyethylene, quantitative hydrogenolysis to light hydrocarbons proceeds within 48 min with an activity of > 4000 mol(CH2units)·mol(Zr)−1·h−1at 200 °C/2 atm H2pressure. Under similar solventless conditions, polyethylene-co−1-octene, isotactic polypropylene, and a post-consumer food container cap are rapidly hydrogenolyzed to low molecular mass hydrocarbons. Regarding mechanism, theory and experiment identify a turnover-limiting C-C scission pathway involvingß-alkyl transfer rather than the more common σ-bond metathesis.

     
    more » « less
  6. Abstract

    Electrochemical hydrogenation of nitrate to ammonia using renewable electricity is a promising route for sustainability but lacks catalysts that can deliver balanced selectivity, activity, and durability. Here, a new family of noble metal‐free and high‐performing Chevrel phase Ni2Mo6T8(T = S, Se, and Te) catalysts that have similar structural and textural properties and differ presumably only in chalcogenide anion is systematically studied. The side‐by‐side comparisons allow the uncovering of the critical roles of chalcogenide anions in impacting kinetic activities and long‐term durability. The incorporation of anions with larger size and smaller electronegativity from sulfide to selenide and telluride invokes stronger inhibition of the otherwise competing hydrogen evolution reaction (HER) and steers the hydrogenation toward the selective formation of ammonia, thus improving both Faradic selectivity and the turnover frequency to high levels of 99.4% and 21.5 s−1, respectively, on the Ni2Mo6Te8catalyst. More significantly, the bulkier anion in the Ni2Mo6T8catalyst kinetically inhibited the intercalation of electrolyte cations, a major degradation mechanism in the catalyst family examined here and delivered several times improved durability. Therefore, this study introduces novel active motifs for selective nitrate reduction and provides insights into the catalyst degradation mechanism and practical ways to improve durability.

     
    more » « less