skip to main content


Search for: All records

Creators/Authors contains: "Maxwell, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Naphthopyran molecular switches undergo a ring-opening reaction upon external stimulation to generate intensely colored merocyanine dyes. Their unique modularity and synthetic accessibility afford exceptional control over their properties and stimuli-responsive behavior. Commercial applications of naphthopyrans as photoswitches in photochromic ophthalmic lenses have spurred an extensive body of work exploring naphthopyran–merocyanine structure–property relationships. The recently discovered mechanochromic behavior of naphthopyrans has led to their emergent application in the field of polymer mechanochemistry, enabling advances in the design of force-responsive materials as well as fundamental insights into mechanochemical reactivity. The structure–property relationships established in the photochemical literature serve as a convenient blueprint for the design of naphthopyran molecular force probes with precisely tuned properties. On the other hand, the mechanochemical reactivity of naphthopyran diverges in many cases from the conventional photochemical pathways, resulting in unexpected properties and opportunities for deeper understanding and innovation in polymer mechanochemistry. Here, we highlight the features of the naphthopyran scaffold that render it a powerful platform for the design of mechanochromic materials and review recent advances in naphthopyran mechanochemistry. 
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  2. In contrast to common angular naphthopyrans that exhibit strong photochromic and mechanochromic behavior, constitutionally isomeric linear naphthopyrans are typically not photochromic, due to the putative instability of the completely dearomatized merocyanine product. The photochemistry of linear naphthopyrans is thus relatively understudied compared to angular naphthopyrans, while the mechanochromism of linear naphthopyrans remains completely unexplored. Here we demonstrate that the incorporation of a polarizing dialkylamine substituent enables photochromic and mechanochromic behavior from polymers containing a novel linear naphthopyran motif. In solution phase experiments, a Lewis acid trap was necessary to observe accumulation of the merocyanine product upon photochemical and ultrasound-induced mechanochemical activation. However, the same linear naphthopyran molecule incorporated as a crosslinker in polydimethylsiloxane elastomers renders the materials photochromic and mechanochromic without the addition of any trapping agent. This study provides insights into the photochromic and mechanochromic reactivity of linear naphthopyrans that have conventionally been considered functionally inert, adding a new class of naphthopyran molecular switches to the repertoire of stimuli-responsive polymers. 
    more » « less
    Free, publicly-accessible full text available October 4, 2024
  3. ABSTRACT Introduction

    Between 5% and 20% of all combat-related casualties are attributed to burn wounds. A decrease in the mortality rate of burns by about 36% can be achieved with early treatment, but this is contingent upon accurate characterization of the burn. Precise burn injury classification is recognized as a crucial aspect of the medical artificial intelligence (AI) field. An autonomous AI system designed to analyze multiple characteristics of burns using modalities including ultrasound and RGB images is described.

    Materials and Methods

    A two-part dataset is created for the training and validation of the AI: in vivo B-mode ultrasound scans collected from porcine subjects (10,085 frames), and RGB images manually collected from web sources (338 images). The framework in use leverages an explanation system to corroborate and integrate burn expert’s knowledge, suggesting new features and ensuring the validity of the model. Through the utilization of this framework, it is discovered that B-mode ultrasound classifiers can be enhanced by supplying textural features. More specifically, it is confirmed that statistical texture features extracted from ultrasound frames can increase the accuracy of the burn depth classifier.

    Results

    The system, with all included features selected using explainable AI, is capable of classifying burn depth with accuracy and F1 average above 80%. Additionally, the segmentation module has been found capable of segmenting with a mean global accuracy greater than 84%, and a mean intersection-over-union score over 0.74.

    Conclusions

    This work demonstrates the feasibility of accurate and automated burn characterization for AI and indicates that these systems can be improved with additional features when a human expert is combined with explainable AI. This is demonstrated on real data (human for segmentation and porcine for depth classification) and establishes the groundwork for further deep-learning thrusts in the area of burn analysis.

     
    more » « less
  4. Multimodal mechanophores that react under mechanical force to produce discrete product states with uniquely coupled absorption properties are interesting targets for the design of force-sensing polymers. Herein, we investigate the reactivity of a 2H-bis-naphthopyran mechanophore that generates thermally persistent mono-merocyanine and bis-merocyanine products upon mechanical activation in solution using ultrasonication, distinct from the thermally reversible products generated photochemically. We demonstrate that a force-mediated ester C(O)–O bond scission reaction following ring opening establishes an intramolecular hydrogen bond, locking one merocyanine subunit in the open form. Model compound studies suggest that this locked subunit confers remarkable thermal stability to bis-merocyanine isomers possessing a trans exocyclic alkene on the other subunit, implicating the formation of an unusual trans merocyanine isomer as the product of mechanochemical activation. Density functional theory calculations unexpectedly predict a thermally reversible retro-cyclization reaction of the bis-merocyanine species that could explain the mechanochemical generation of the unusual trans merocyanine isomer. 
    more » « less
    Free, publicly-accessible full text available June 6, 2024
  5. Understanding structure–mechanochemical reactivity relationships is important for informing the rational design of new stimuli-responsive polymers. To this end, establishing accurate reaction kinetics for mechanophore activation is a key objective. Here, we validate an initial rates method that enables the accurate and rapid determination of rate constants for ultrasound-induced mechanochemical transformations. Experimental reaction profiles are well-aligned with theoretical models, which support that the initial rates method effectively deconvolutes the kinetics of specific mechanophore activation from the competitive process of nonspecific chain scission. 
    more » « less
  6. Abstract

    The New World Screwworm, Cochliomyia hominivorax (Calliphoridae), is the most important myiasis-causing species in America. Screwworm myiasis is a zoonosis that can cause severe lesions in livestock, domesticated and wild animals, and occasionally in people. Beyond the sanitary problems associated with this species, these infestations negatively impact economic sectors, such as the cattle industry. Here, we present a chromosome-scale assembly of C. hominivorax’s genome, organized in 6 chromosome-length and 515 unplaced scaffolds spanning 534 Mb. There was a clear correspondence between the D. melanogaster linkage groups A–E and the chromosomal-scale scaffolds. Chromosome quotient (CQ) analysis identified a single scaffold from the X chromosome that contains most of the orthologs of genes that are on the D. melanogaster fourth chromosome (linkage group F or dot chromosome). CQ analysis also identified potential X and Y unplaced scaffolds and genes. Y-linkage for selected regions was confirmed by PCR with male and female DNA. Some of the long chromosome-scale scaffolds include Y-linked sequences, suggesting misassembly of these regions. These resources will provide a basis for future studies aiming at understanding the biology and evolution of this devastating obligate parasite.

     
    more » « less